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Resol ut ion -Oriented Fault Interrelationships in
Combinational Logic Networks

VI1NOD K. AGARWAL AND GERALD M. MASSON

A bstraci -This correspondence considers fault resolution af,
a process or applying a sequence of input vectors, called tests, to a
combinational logic network in order to resolve an existing fault

ittinfrom within a given master set of faults. A functional
approach based upon an extension of the well-known Boolean
difference concept to fault dependent situations is described. The

NlAnu~.cripl received February 23. 1976; revised June 1, 1974 Tht winkt %so
sup~m,ried in part bhv Office ofNaval Resaearch Contract NfI)4.Th.C-15A

The atithors are with the Department of Electrical Engineering. The .1--hn.
Hopkins tiniversit'.. Halt imore. Ml) 21218.
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Fig. 3. Comparison of accuracy among the focus, fixed-point, and floating-point

number systems.

raising a number to a noninteger power is performed essentially computers of over 16 bits for which the lookup table of focus
like a single multiplication in the prior art, and the wide range becomes impractically long. If a direct hardware implementation
of possible states can represent very large or very small answers. of the focus table is found, floating-point arithmetic will be se-
The difficult but useful square-root function is extracted in focus riously challenged in all applications.
simply by shifting right I bit, then adding 0 1000.000.

V1. CONCLUSION
V. COMPARISON OF FOCUS TO THE PRIOR ART It is concluded that, for a fixed word length, Focus is superior

Fig. 2 is a qualitative comparison of execution times between in accuracy to floating-point arithmetic in all cases and to fixed
the focus-number system and an integer system requiring soft- point (integer) in many cases, especially including control systems
ware multiplication. Exact execution times are a function of many for which the sensing control signals can be reduced by differ-
things (for example, inclusion or exclusion of optional steps and ential inputs or other analog means into forms that approach zero
facileness of the machine language); however, overall it is ex- as the system approaches the desired controlled state.
pected that the focus-number-system algorithms will perform
a mixture of calculations about five times faster in a microcom- REFERENCES
puter than a prior-art fixed-point (integer) system using software
multiplication. This estimated number does not include the time IIl T. C. Barter. Digital Computer Fundamentals. New York: McGraw.Hill. 1972.

ch. 3.savings expected by using single instead of double precision, as 121 G.A. Maley and M. F. Heilweil, Introduction to DigitalComputers Englewmid
is allowed by focus in certain applications. Software floating- Cliffs, NJ: Prentice-Hall, 1968. ch. 7.
point times are not shown, but this would be slower than fixed- 131 S. C. Lee. Digital Circuits and Logic Design. Englewuod Cliffs. NJ: Pren-
point arithmetic. tice-Hall, 1976. ch. 2.

Fig. 3 is a quantitative comparison of accuracy among the
focus. fixed-point (integer), and floating-point number systems,
in which all are normalized to 8-bit bipolar systems. The error
figure given is the maximum relative error in the region around
any" given number represented. This is half the step size, and is
% '3 times the root-mean square error in that region. In this figure
the fixed-point system is seen to be the most accurate system in Resolution-Oriented Fault Interrelationships in
a narrow range between very large and very small numbers. It is Combinational Logic Networks

thus useful in processing a well-behaved signal for which the
virtual ground concept of focus control or the wide range of the VINOD K. AGARWAL AND GERALD M. MASSON
focus system are not required, and where speed is not important. Abstract-This correspondence considers fault resolution as
Integer arithmetic is also superior in certain operations involving a process of applying a sequence of input vectors, called tests, to 8
chain addition, such as a program counter. The floating-point combinational logic network in order to resolve an existing fault

* system inefficiently crowds states when the mantissa is large, situation from within a given master set of faults. A functional
leaving sparsely covered regions of high error scattered across the approach based upon an extension of the well-known Boolean
number line. Base ten was chosen for comparison. A larger base apprac cane uo an eensiontof th w eln Toe
would result in wider oscillations and a smaller base would result rence concept to fault dependent situations is described. The
in a higher average error due to redundant states; for example,
base two would have a 50-percent state redundancy resulting in Manuscript received February 23, 1976; revised June 1, 197 This %wrk we-

supported in pert by Office of Naval Research Contract N0i014.75-C-I 1I96
an average near the l0-percent error line. Floating point although The authors are with the lepartment of Electrical Enrineering. The .hhn-
very slow without a costly arithmetic unit, is attractive in large Hopkin.s University. Baltimore. MID 21218.
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T(Fm) = IXjZ!X;YmJ * ZjX;a,4 X2

In words, for every XE T(FM), ZIX;YMI is different than the
output of the faulty network, Z[X;aM]. Thus, when any test
X e T(FM) is applied to a network, if the Boolean output of the
network is different than the Boolean value of the output func- %_
tion describing the fault-free network, we say the network has X
failed the test; otherwise we say the network has passed the
test.

Clearly, the test set T(FM) is based on comparing the operation 3,

of a faulty network with that of a fault-free network. However,
in order to characterize the fault interrelationships germane to
the fault resolution process, it will be necessary to compare the
operations of the network under two fault conditions. Thus, as-
sume that fault condition Fj is known to exist in N, and we are 'X2
to determine a complete test set for detecting F, in network N
with Fj present. We will refer to such a test set as a fault de- Fig. I. ZIX;l -ilxz 4 z .+,, 421 34 ,14.
pendent test set, and denote it as T(F, jFj). It should be clear
that

T(FIFj) = {XIZ[X;Yi,aj] I Z[X;al,ajj = I1. (2) The fault dependent test set will be seen in the following sec-
tion to be fundamental to the characterization of the resolu-Note that such a test is I ased on a fault dependent Boolean tion-oriented fault interrelationships. Theorem I then indicatesdifference which only gives valid results for the network if, in- a straightforward means by which standard testing information

deed, this assumed fault Fj exists in the network. Also note that can be used to consider the existence of such fault interrela-
in applying a fault dependent test, the operation of fault-free tionships in actual situations. However, Theorem 1 also gives
network is not of concern, and the conclusion as to whether or not significant insight into the concept of a fault dependent test, as
the network has failed or passed the test must take this into ac- it indicates that there are really two types of fault dependent
count. Our convention for this will be the following. For a test X, tests: one type of which seems reasonably satisfying intuitively,
E T(F IFj), let the logical value of the Boolean expression ZjXj; the other of which seems significantly less so. To illustrate this,
Y, ajl be a, a E 10,I). Now, if the output of the network when this let of w seems a ndle the otu f tef utre tork
test is applied is U, we say the network has failed the test; oth- let X, aT(FiFj) and let the output of the fault-free network
erwise we say the network has passed the test. with XI applied to it be ZJX1;Y1,Yj] = 1. Now, we will consider

A fundamental interrelationship which exists between fault the following two cases.
dependent test sets and standard test sets is described in the
following theorem. Z[X 1 ;a,raj] = 0.Theorem 1: Since X truly tests lin the sense of (1) for F, U Fj while not

T(FIFj) = T(Fj) a T(F, U Fi). testing for Fj, this test seems to agree with what could be natu-
Proot: Since ZIX;Y,, Y4] * ZIX;Y,, Y,] = 0, it is clear from rally accepted as a fault dependent test for F in the presence ofProof. that T( IXF IY) = (ZIX;YId Yj* ZIX;a,a t) 0 (Zc X; Fj.(2) that T(F;,YF) = X ;. Case 2: LetXI be such that Z[Xi;Y,a] = Oand

Y1,Y.J1 9 ZIX;Y,,Y.,]) = 1.
However, by simply rearranging the above equation, we ob- ZJX 1 ;ar,a,,] - I.

tain However, in this case, since XI is a test which does not take into
T(FIIF) = IXI(ZIX;Y,,aj] 0 ZX;Yj,Yj]) account the effect of the fault F relative to the fault-free net-

0 (Z[X;a,,a.j] 9 Z(X;Y,,Yj]) = 11 work, such a test is intuitively less satisfying. It is this interesting
aspect of a fault dependent test, however, which makes it a

or powerful tool in fault resolution considerations. Note that by

T(Fj ,IFj) = T(Fj) a T(FJ U F.,). Q.E.D. Theorem 1, any fault dependent test is always one of the above
two types. _

Example 1): To illustrate the above, consider the network of 
--

Fig. 1. Suppose M = 11,2,3,51. Let I = 11,21 and a, - la,a2l = 11,1 1, IV. RESOLUTION-ORIENTED FAULT INTERRELATIONSHIPS
and let J = 13,51 and aG = lo. ,os = 10,11. It can be seen that ZIX;
YM = (Y'3X4 + Y2)Y1 + (YX 4 + Y2)(Y + i). Suppose now that There exists an inherent limit to the degree to which a fault
Fj is known to exist in the network, and we want to determine situation can be resolved within a master set, and this limit de-
whether F, also exists. By using (2), we get pends upon the fault interrelationships which exist among the

faults within this set and the knowledge regarding the existing
T(F, IF.,) = IX IZ[X;Y,a,] 0 Z[X;a,,aj = 1 fault situation which has thus far been attained. By means of the

= IX 12 = 11. results of the previous section, we are now able to characterize
pertinent fault interrelationships which describe these limita-

We now choose, say, X) = (0000) - T(F, IFj) and then determine tions. To do so, we will consider the master set of faults Fif, and
that ZIXi;Yj,aj] = 0. Now if we apply X, to the circuit con- then describe the fault interrelationships between subsets of
taining Fj, the output would be a I if F, were present and a 0 faults within this master set, say, F, and F. Note that it is not
otherwise. Also note that since T(F, U Fj) = IXIX12 + xIx 2x.3x4  necessary that F, U Fj = FM.
+ i2i 3x 4 = II and T(Fj) = IXlx)1 2 X3x 4 + x112 x-x 4 = 11, by Our characterizations of these resolution-oriented fault in-
Theorem 1,wehave T(FIFj) = T(F,) * T(F, U Fj) = lXI112  terrelationships will be given by means of the fault dependent
= iI. Boolean difference. Hence, we will immediately have algebraic

formulas with which to verify whether these conditions actually
exist within a network for some subsets of a given master set of

'Fei. I i.4 token from Ku and Masmn 1I faults.

• I ._ _••
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Definition I: Fj completely masks F, denoted F j; F. if and necessary but not sufficient condition for the unresolvability of
only if T(FIij) = 0, where 0 denotes the empty seL those fault situations.

In words, we say that fault situation Fj completely masks F, Example 3: To illustrate the above, consider the circuit of Fig.
if and only if it is not possible to detect F, when it is known that 3, and let M = 11,2,5,61,1 = 12,61, J = 11,51, a, = 10,11, and aj = 11,01.
Fj exists in the circuit. Since ZIX;a,,YjI - Z[X;Y,,ajI = X2Xs, we have that F - Fj.

Friedman 17), Hayes 181, Gault et al. 191, and Wang 1101 among However, note that T(Fj IF,) = IX Ix2x3 = 11, and therefore, these
others have reported on a masking relationship among faults, two double faults are resolvable. In other words, if it were known
which we will refer to in the following as classical masking. Given that the fault F, were in the circuit, then if we applied X, -
FiFi UF.,T(F), and T(F U F), if for some test X, E T(FI), (0110) to the circuit, the output would be a 0 if F also existed and
we have that XI t T(F, U F.), it is said that F. classically masks a 1 otherwise.
F relative to the test, and if this is true for all X E T(FI) we then In the remainder of this section, we will give some useful re-
say that Fj classically masks F. Clearly, this is not equivalent marks involving unresolvability, functional equivalence, complete
to saying that Fj completely masks F, since it is still possible masking, classical masking (test nullifying), and fault dependent
that the fault conditions F, and F, U Fj can be distinguished. testing. These remarks are intended to make more salient certain
Since classical masking describes a situation where tests for F, important features of our fault interrelationships.
aye rendered useless by the addition of Fj to the fault condition, Remark 1: Given the three fault situations Fi, F, and FK:
classical masking might be more accurately described as test set a) Fj -F U F if and only if F T F, U F .
nullifying, and in the following we will denote this classical b) T(FIF, U F.,) =T(F.,I U F.,) =0.
masking relationship as Fj W F. c) T(F U F IFK ) = T(F. IFK) O T(F IFj U Fx).

The concept of complete masking has also been suggested by d) T(FIF.,) 9 T(FiIFI) = T(FI) ( T(F).
Cha and Metze (12]. They, however, choose to refer to it as m- The proofs of these follow directly from Theorem 1 and the
covering. They then couple this m-covering concept with test set definitions of this section. Remark 1a) gives the conditions under
nullifying, and refer to that resulting concept as masking. W¢hich functional equivalence &nd unresolvability are identical

Example 2: To illustrate the above, consider the network of interrelationships. In other words, if two fault situations are
Fig. 2. Let I = 15,61 and al = 1a5,c61 = 10,11, and let J = 1131 and equivalent, and one of these fault situations is a subset of the
a. = lain} = 101. ltcan be seen that T(F,) = {XIxixs ei; = 11 other, then those two fault situations are unresolvable. Remark
and T(F, U F) - lXIxIx 2 0 x3X4 = 11. Since T(F,) n T(F U) 1b) asserts that it is not possible to test for a rubset of a specified
F) = 0, it is clear that F, ; F. However, by Definition 1, fault situation when it is assumed that, indeed, the entire speci-
T(FiF.,) = lXIx~x2 ix- = 11 P5 0. Hence Fj M' Fl. Thus, ifit were fled fault situation exists in the circuit. Remark Ic) is useful in
known that F existed in the network of Fig. 2, it would still be simplifying expressions involving fault dependent tests such that
possible to determine whether F1 also existed. For example, ifwe all such tests are in the form of (2) wherein the assumed fault
applied the fault dependent test X = (1100) to the network situation and the tested for situation are disjoint. For example,
containing Fj, the output would be a 0 if F, also were present, to determine T(Ft U Fj IF,, U FL) we can use this Remark 1c).
and a 1 otherwise. It should be noted that the fact that F 7w F, Letting K = J U L, and noting that
does not necessarily imply that F, j Fj. Hence, although the
concept of complete masking is an indication of a limit to which T(FUFjFj FL) = T(Fj)Fj U FL) 6 T(FIIFj U FL)

'resolution can be achieved with algebraic terminal experiments, =T(FIIFj U FL),
it should also now be clear that any such resolution testing must
take into account more than just one-way masking interrela- since, by Remark 1b), T(Fj IFj U FL) = 0. Finally, Remark id)
tionships before definite conclusions concerning the existing fault indicates a relationship which exists between fault dependent
situation within the master set can be made. The next fault in- test sets and the composing fault test sets which does not involve
terrelationship to be described moves further in that direc- the composite fault test set. This Remark 1d) makes apparent
tion. an interesting property of redundancy. Suppose, for example,

Definition 2: F, is unresolvable from F, denoted F, r F, if that F, and Fj are redundant fault situations. Then T(FI) =
and only if T(F1 IFj) = T(Fj IFI) = 0. T(Fj) = 0. By Remark 1d) this means that T(Ft IFj) = T(F IF),

In words, we say that fault situations F1 and Fj are unresolv- and, if these two fault dependent test sets are not empty, the
able if it is not possible to detect F, in the presence of Fj and if composing, redundant faults are resolvable in that it is possible
it is not possible to detect Fj in the presence of F. (with the same tests) to detect either of the redundant faults in

The concept of unresolvability might seem to be similar to the presence of the other. This is, then, an algebraic assertion of
McCluskey and Clegg's concept of functional fault equivalence a fault phenomena first noted by Friedman 171.
111). The differences between the two concepts are a result of the We will now consider the connection between complete
standard testing and fault detection (to which functional masking and classical masking or test set nullifying. We know
equivalence relates) and fault dependent.testing and fault reso- that if F W F1, then T(F,) fl T(F U F,) = 0. But from this it
lution (to which unresolvability relates) considerations, as will is clear that T(F,) S T(F U F,) Fe 0. Hence, we have that Fj "
now be shown. Given the faults F, and F if ZJX;a,, yj] = F, implies that F, 4 Fj. In other words, if Fj classically masks
Z(X; Y,aj, it is said that the two faults are functionally equiv- F, then F does not completely mask Fj. This can be extended
alent, denoted F, - F. It is clear that F, - F if and only if T(FI) further by noting that if we have that F W FJ and F, W F1, then
= TF.). But using the definition of unresolvability and Theorem clearly F W F.
1, we have that F, A- F, implies that The above result significantly indicates the difference of the

fault interrelationships which are pertinent to fault detection and
T(FlIF) = T(FIF,) = 0 fault resolution. In termsof faultdetection if twofaultsituations

classically mask each other, they form what is referred to as an
or undetectable fault set 19) in that the composite fault situation

T(FI) e T(F, U F) = T(P.) 0 T(F, U F) = 0 cannot be detected with tests from the test sets for either of the
composing fault situations. However, we have seen here that in

which implies

T(hc i e T(F,) = TF) T(F, U F)

Thus, the functional equivalence of two fault situations is a 2 Fg. 3 and Example 3 are taken from Cha and Metze 1121.
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1 T(Ft U F). Hence, unresolvability can be considered to be
an interrelationship among faults which limits the degree of
resolution which can be attained when testing is performed with
more information regarding the existing fault situation than is
generally used with standard test set approaches. Hence, the
parallel between functional equivalence/standard testing and
unresolvability/fault dependent testing is clear.

Fig. 2. Z(x.01-i 1!=2 , + x* x1s It might be noted here that, indeed, if we did have some ex-
ternal means of injecting faults into the network on, say, some
lines K of the circuit, and we had the case that F ; Fj, but that

1 - FF'; Fj, and FK W FI, then we could resolve the fault situation
X2 further. As an illustration of this, consider the following.

Example 4: It can be observed in the network of Fig. I that if
I = 151 and at = laI = Ill, and J = 191 and aj = losI = Ill, then F,
T Fj. Thus, even if it were possible to inject one of these two

*faults, say, F,, it is easily seen here that it still would not be
possible to determine whether F, also existed in the network.

Fig 3. ZlX.A = z2X a 't1 2 13X 4. However, if we could inject some other fault, say, FK, K = 1131,
aK = 10131, = 101, then since FK f Fj, and Fx ji FI, applying theinput combination (I I11) E T(F I Fx) we can now test for the

terms of fault resolution, these two fault situations are then re- fault F i.
solvable. This is summarized in the following. A complete treatment of this idea of enhancing resolvability

Remark 2: by means of external lines to the network which can be used to
a) F1 W F and Fj W F, implies F, " Fj. inject fault situations is beyond the scope of this paper. Howevr,
b) Fi - F and F j F, implies F, T Fj. it seems that the functional approach to fault interrelationships

being utilized in this correspondence makes clear the criteria
V. FAULT INTERRELATIONSHIP RAMIFICATIONS which must be satisfied for the design of highly resolvable net-

works.
Whenever a test, standard or fault dependent, is applied to a

network, the information contained in the outcome of that test
is, in gerpral, quite limited in terms of fault resolution. For ex-
ample, i:1'we determine, say, T(Fj) for F, applvaXI E T(F,)to
the netwdork, and observe that the network fails the test, we can In conclusion, we have presented in this correspondence a
only conclude that, indeed, the network is faulty. Similarly, if the characterization of fault interrelationships which limit the res-
network passes the test, we can only conclude that F, is not olution of a fault situation from within a master set of fault% when
present Analogous statements could be made for fault dependent we have certain information about that fault situation which
testing. Therefore, in order to locale-or resolve the existing fault allows us to do fault dependent testing instead of standard
in a network, a sequence of tests must necessarily be applied, testing. This has been done by means of an extension of the
However, even with the application of a sequence of tests, a point Boolean difference to fault dependent situations. It should be
will be reached where further resolution is not possible. We are clear that unresolvability, the main interrelationship of this
considering in this correspondence an approach to fault resolu- characterization, is really only another point on a spectrum of
tion based on algebraic terminal experiments. For a set of master fault interrelationships which is increasingly being seen to be of
faults in a network and using this approach, the limit of resolution significance in fault analysis. Certainly, this spectrum will be
which can be attained is dependent upon the type of test used and worthy of future research.
the existing fault interrelationships within the master set. It
should be clear that higher resolution is possible if fault depen-
dent testing is used instead of standard testing, since fault de- ACKNOWLEDGMENT
pendent testing takes into account fault situation information
not utilized by standard tests. In the following we will specify the The authors wish to thank Prof. G. Metze of the Department
limits of resolution attainable with fault dependent testing in of Electrical Engineering and the Coordinated Sciences Labo-
terms of the fault interrelationships which were characterized ratory of the University of Illinois at Urbana-Champaign for
in the previous section. It will be seen that in terms of resolution suggestions, criticism, and discussion regarding this work.
limits: unresolvability is to fault dependent testing as functional
equivalence is to standard testing.

Suppose that in a network, we have that the existing fault in REFERENCES
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An Efficient Fault Diagnosis Algorithm for Symmetric
Multiple Processor Architectures
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Abstract- A new diagnosis algorithm for determining the existing
fault situation in a symmetric multiple processor architecture is
given. The algorithm assumes that there are n processors. each of
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which is tested by at least other processors, and at most t of which since they are descriptively cumbersome, these extensions will not
are faulty. The existing fault situation is always diagnosed if be detailed.
n > 2t + I and, in some cases, can still be diagnosed if n < 21 + 1.
The implementation of the algorithm is straightforward and suitable DIAGNosIS ALGORITHM
for microprocessor applicationL

Each test table Bi has components B,.o, Bi.,, " B. - where

Index Terms-Diagnosis algorithm, fault syndromes, micro- Bi. represents the conclusion of module U, regarding the state of
processor, modular networks, module U. If module U, "believes" that module U1 is fault-free,

then B,. is set to the value 0; otherwise. B,.j is set to the value 1.
INThODUCTION Suppose that B0, BI, "", B.- 1 are complete in the sense that every

Consider a general model of a multiple processor architecture module has a conclusion regarding the state of each of the mod-
consisting of n digital modules denoted U0 , U1. ', U. and ules U1, i = 0, 1, ---, n - 1. We will assume here that if a module is
some associated interconnection design denoted D,.,. These mod- fault-free, its corresponding table is correct.
ules, for example, could be n processors implementing a seg- Lemma 1: There exists at least n - t of the B, tables which are
mented algorithm [6]. Regardless of the use of the multiple identical.
processor architecture, we will assume that each U, is capable of Proof: Since at most t modules are faulty, and since a table
testing the other Uss to which it is directly connected for some corresponding to a fault-free module correctly describes the fault
specified class of faults. If a module contains any such fault, we situation, the theorem follows.
will refer to it as faulty. The problem we will study in this paper is Lemma 2: If there exists only one set of identical tables B1,3 ,,
the diagnosis of an existing fault situation among the modules B,2), "", B,(,, such that s > n - t, then each of these tables in this
given their respective testing resulti This problem is not new and set correctly describes the existing fault situation.
has been examined elsewhere in the literature [1], [3], [4], [5], [71, Proof: We already know that there exists at least n - t

[81 The results to be presented here represent a new approach to correct, and therefore identical, tables. Therefore, ifonly one set of
such diagnosis. In particular, the diagnosis procedure described identical tables has a cardinality larger than or equal to n - t. this
will be seen to be sufficiently straightforward to be easily im- set must consist of the correct tables.
plementable on a simple processor, e.g., a microprocessor, and for It should be clear that no conclusion can be made regarding the
a proper interconnection design among the processors and upper fault situation if there exists more than one set of identical tables
bound on the number of simultaneous faults which can occur, will with cardinality larger than or equal to n - t.
always yield the correct diagnosis of the existing fault situation. Theorem 1: Suppose that n _! 2t + 1; then there exists one and

only one set of identical tables with cardinality larger than or

PRELIMINARIES equal to n - t.

Given It modules U0 , U, 1, U. - 1 we will denote the modules Proof: Suppose that n > 2t + I and assume that there exist
ieh j toeles y U, r"", U- , twere deote the mo0ule 1, two sets of identical tables of cardinality n, and n2, respectively.which U1 tests by Uf3,,,3, r - 1, 2,'" t where f(r, i) 0 [0, 1, ". Assume

P.- 1], 1 = 0, 1, -, n - 1. For convenience, we will always assume

that U, tests itself and, regardless of its state, concludes that it is
fault free. The outcome of the test of module Ufr.i, by module U, at _ n - t
will be denoted a(i, f(r, i)) where and

0, if U, concludes that U.(,.j1 is fault free n2 > n - t.
a(i,f(r i)) 1, otherwise. Then

It should be noted that the conclusion of, say, U, regarding the
state (faulty or fault free) of the modules to which it is connected is n1 + n > 2n - 2t.

only reliable if indeed U, is fault free. If with each module U, we We know that
associate a test table Bi, i = 0, 1 --', n - , where B, represents the
conclusion of U, regarding the states of all the modules, we have n nl +n
the problem of determining the existing fault situation based on and therefore
the available test results. Whether or not this is feasible clearly
depends on the number of faults and the interconnection design. n _ 2n - 2t.
We will assume in the following that at most t modules can be This inequality. used in conjunction with n 2t + 1. yields
simultaneously faulty and that every module is tested by at least t
other modules. Under some assumptions on the interconnection 2n > 2n + I
design, Preparata. Metze. and Chien [71 have shown that it is
feasible to diagnose any valid fault situation. However. the diag- and we conclude that we cannot have two sets of identical tables
nosis algorithms which have been proposed to do so are quite of cardinality larger than or equal to n - t when n >_ 2t + 1.
complex [1], [4], [5]. We propose here a new diagnosis algorithm At this point we need an efficient procedure to build the com-

for this problem. For the purpose of explanation we will assume in plete n tables B0 . B 1. - B,_ - such that if module U, is fault-free,
the following that the interconnection design between the mod- then the table B, reflects accurately the fault situation of the mul-
ules is the so-called D,., design of [71. wherein there is a testing tiple processor architecture. Such an algorithm is presented in the

interconnection from U, to Uj if and only ifj - I= m (modulo n) following to compute the tables B0 , B. "", B, 1.

and m assumes the values from I to t. The results presented here Algorithm 1: Let i in [0, 1. ,n - i] and * in [1.2, .. .,- 1] be

have been extended to more general interconnection designs, but given.
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Fig I Flowchart of Algorithm I Inerpretaton when module U is not faulty

Step O: Set B., = 0 for m O. 1.., n - I. set j i, set and NF, and therefore we conclude that (Ai) is always satisfied
k = i + I. and set N, = 0. before the execution of Step 3.

Step i: If NF ! t, stop: else, go to Step 2. It is only possible to reach Step 3 if
Step 2: If k = i, stop else, go to Step 3.
Step 3: If a(j. k) = 1. set B,.k = l. set N. = NF + 1.and go to N, <

Step 4: else, set j = k and go to Step 4. It follows that just before the execution of Step 3. the quantitiesj
Step 4: Set k = k + I and go to Step I. and k are related by the assertion

Notes:
I) All additions are performed modulo n. (A2)j+ I k j+ t
2) We assume a D., interconnection design, i.e.f (r, j) =j + r which shows that the algorithm is well defined.

(modulo n), and therefore, we use the notation a(j,j + r) instead The first part of the proof showed that the algorithm is well
of the more general notation a(jf(r, j)). defined. We now prove that if U, is fault-free, then the table B,

Theorem 2: If a D,., interconnection design is used, if the max- reflects the actual fault situation. Following again the approach
imum number of faults which may occur is t, and if module U, is described in [2), we show that the following assertions are always
fault-free, then the table B, constructed by the algorithm ac- satisfied before the execution of Step 3.
curately reflects the existing fault situation. (A3) The module Us is not faulty.

Proof: We need to show that the algorithm is well defined (A4) B, accurately reflects the existing fault situation up to
and that it produces tables B, which are correct whenever U, is not k - 1, i.e., for all m in [i, i + 1, i + 2, " k - I]:
faulty. The technique we use to prove the theorem is based on the
use of invariant assertions as described in [2] (see Fig. I). B., = 0 if and only if module U., is not faulty

We assume that a D., interconnection design is used, i.e.. and

module U, tests the modules U,, I. U,- 2,.-'. U,.,. The algorithm B,., = I if and only if module U, is faulty.
uses the quantity afj, k) which contains the result of the test of
module k by module. It follows that the algorithm is well defined (A5) NF contains the number of faulty modules up to k - 1. i.e..
if and only ifj and k are related by k_,

k = j + NF - B,...

where r is some integer in [1. 2.-, t]. It can be shown that if (A3). (A4). and (A5) are true before the
Assume that before executing Step 3. the following assertion execution of Step 3, then they are still true after the execution of

holds: Step 4. Clearly, (A3), (A4), and (AS) hold after the execution of
(AI) j + ! k <j + I + N,. Step 0. and therefore we conclude that (A3), (A4), and (A5) are

always true before the execution of Step 3.

Then it can be shown that (AI) still holds after the execution of Now, suppose that the algorithm stops in Step I. We know that

Step 4. Clearly. (A I) is satisfied by the initial values given to j, k, B, is correct up to k and that N - t. In other words, B,., correctly

II t ,7% .
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Fig. 2. D, 3 interconnection of nine modules, modules U, U3. and U/6 faulty

reflects the fault situation form =i.i + 1. .., k and tfaults have Step 2: Let V = {j [0, 1, n - lfys > + I:.
been detected. But we have assumed that at most t faults may Note that if the tables B, are arranged to form an n x n array
occur, and therefore this implies that the remaining modules are where B, is the itb row, then 7, is just the number of l's in column

,not faulty. The B,,, for m - k + 1, k + 2. --. i - I are equal to 0, j.
and therefore the complete table Bi is correct. Theorem 3: If a DI., interconnection design is used, if the max-

Suppose that the algorithm instead stops in Step 2; then B, is imum number of faults which may occur is t. and if n >_ 2t + i
correct up to k = i, and therefore Bi is correct. then Uj is faulty if and only if j is in V.

Although we have shown that when the algorithm stops, it Proof: The result is a direct consequence of Lemmas I and 2
produces the correct table, it remains to be shown that it indeed and Theorems I and 2.
stops after a finite number of iterations. We note that k takes the Algorithm 2 is well suited for implementation on a micro-
values i, i + 1, i + 2, - -, and therefore if the algorithm does not processor. For example, on an Intel 8080 microprocessor, the
stop in Step 1. it must necessarily stop in Step 2. This concludes total amount of memory necessary to store the data and the pro-
the proof of the theorem. gram in the case n = 8 and t = 2 is 176 words of 8 bits. i.e., 1408

Note that table Bi does not contain any DON'T CARE entries, bits.
This occurs because table Bi is constructed by using not only the We note that Algorithm 2 may be implemented in parallel on a
test results of module U,. but also the test results of other mod- network of N microprocessors with N _< n. In particular, if N
ules. For example, if U1 does not test directly U, but U, tests U& microprocessors are used. then it is possible to compute in parallel
and finds U, correct, then U, accepts the conclusion of U, regard- all the tables B, and all the quantities -,. The computational time
ing Uj, necessary to diagnose the network of n modules using N micro-

processors for implementing Algorithm 2 is essentially Tin/NJ/n
where T is the computational time necessary to execute the in-

ACCSLELRATED ALGORITHM structions of Algorithm 2 when a single microprocessor is used
The diagnosis of the set of faulty modules based on the results and [n/NJ is the smallest integer larger than nWN. The simplicity of

of Lemmas I and 2 and Theorem I requires that the table B,, Algorithm 2 gives a large amount of flexibility to its implementa-
i = 0, 1. -, n - I be compared. This process is time consuming tion. For example, one could construct a special very reliable
and may be avoided. For each j = 0, 1, -. n - 1. let ,j be the arbitrator device which would receive all the a(i. j)'s from the
number of indices i for which B,., = 1. i.e., modules and then would generate the diagnosis of the system

•j = cardinality of {i c [0, 1. -.., n - I] I B,.j = 1), using Algorithm 2. The high reliability of the arbitrator could be
justified because of the simplicity of its required operation relative

then these quantities may be used in a diagnostic algorithm as to the complexity of the modules in the network. Alternatively, it
follows, would be possible to send the a(iQj)'s to each module. which could

Algorithm 2: Let t in [I, n - 1] be given, in turn compute the tables B,. In this case, each module could then
Step 0: Compute the tables B0, B. B", , by using Algo- decide for itself which other modules are faulty and act ac-

ithm 1. cordingly. Clearly, many other variations for implementation are
Step I: Compute the quantities 'o. 7,. ", '.- . possible.
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EXAMPLE tween the construction of the various tables. It ts not difficult to

In order to demonstrate the simplicity of the algorithms, we fi(nd schemes in which the construction of the table Udepends on

apply them to the network given in Fig. 2. The network contains .ie tables Uo. U1. " U _. Such schemes are more compltcated
n = 9 modules. t = 3. i.e., at most three modules may be faulty, to code than the one we propose require more memory to store
and asD interconnection design is used. i.e.. module U d tests U . the program. and do not lend themselves to parallel implementa-

tes2 and U , module Ut tests Ul Us, and U. etc. Assume that tion. Therefore, we feel that our scheme. i.e.. Algorithm 2 which
the modules U1. UU, and a ,6 are faulty. Fig. 3 contains a possible has a time complexity of 0(nt) if sequentially implemented and

set of test outcomes. The application of the algorithm to these test 0(n) if implemented on a network of n microprocessor, is ideally
outcomes yields the tables B. i = 0. 1. 2..., 8- given in Fig. 4 We suited for the fault diagnostic of D ., networks.
find that the tables B . B,. B4 . B .B3,. and B% are identical. We
have stx identical tables, and using Lemma 2. we conclude that REFEREaCES
these tables reflect the correct fault situation of the network. i.e..

we conclude that the modules U, U 3. and U6 are faulty. Aderna- [l]A M Corlehan and HaI m. On an algorlthm for identNg faulsmaT-dagnosale system" in Proc 976 ConL. on /nfornl Sc, and Se'r. The Johns

lively, we may compute the quantities y', t~e.. yo 0. Y'i = 8, Hopkins Unts.. 1976. pp 370-37.

; 2 = 0 .; 3 = 8 . ,'a 0 . ;' 0 .3'6 = 8. " ., = 1. a n d 7' 8 = l .a n d th e n 2] R W F loyd . A ss gn ing m ean ins to pro gram s, in P ro . Syru p n 4pph ed

compte te st V uV~ 4 = . 3.6 l.stn Therem3 l~ Math. Amer Math. Soc. Providence. RI. 1967. tpp 19 32
com ute the set l' {-I;' -> 41= { , 3 61 U si g heo em . Il L Hakimi and A T Am in"Characterzatin fthe c nnectin asig'nment f

we conclude once again that Ut, U 3 , and U 6 are faulty. dagnosable systems." IEEE Tran.s Cmput .ol. C-23. pp 86 88. Jan 194

141 T Kameda. S Toida. and F Allan. "A diagnosing algorithm for networks.-
Inform Contr.. vol 29, pp 141-148. 1975

CO)NCLUSION 1] S N Maheshwari and S L Hakimi. "On models of diagnosable systems and
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1976

multiple processor architectures has been proposed. It consists of [6] G G L Meyer. "A segmented algorithm for solving a class of constrained

constructing tables B,. assuming that the corresponding modules discrete optimal control problems.- IEEE Trans .4uomat Conrr, vol AC-9.
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F7 P Preparata. G. Metze. and R T Chien. "On the connection assignment
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tables B,. = 0. I. -. - I by increasing the dependency be- tions. June 1973. pp 139 144
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Recursive Coverage Projection of Test Sets

VINOD K. AGARWAL AND GERALD M. MASSON

Abstract-In the generation of test sets for the detection of
stuck-type faults in combinational switching networks, it is an
expedient and reasonably common assumption to consider explicitly
faults only of specified sizes (for example, all single faults), and then
to assume (or hope) that most or all faults of larger sizes will be
covered (that is, detected) as welL This paper systematically
addresses this aspect of multiple fault coverage in a quantitative
manner for combinational networks, wherein only primary input
fanout is allowed. A procedure is given to estimate (or project) the
multiple fault coverage capability of a test set based on the known
coverage capability of that test set for subsets of the multiple faults.
This is accomplished by means of a recursive use of a detailed
formula which exploits two fundamental interrelationships between
test sets and faults. Based upon these results, it can be shown that the
above-mentioned assumption must be made, in general, with
discretion as its validity is highly nelwork structure/test set
dependent.

Index Terms-Consistency, coverage, fault detection, internal
fanout-free networks, multiple faults, recursive projection.

1. INTRODUCTION

The magnitude of the number of multiple faults which can
potentially occur in any logic network of reasonable size usually
prohibits their individual consideration in test set generation.
Nevertheless, the ability to test a logic network for multiple faults
with a certain degree of confidence is fundamental to the reliabil-
ity aspects of a wide range of systems composed of such logic
networks [9]-[12]. Thus, in practice, it is often found that a test set
will be generated explicitly for only a subset of all possible faults
which can occur with the assumption (or hope) that most other
faults are covered as well. Except, however, for some reasonably
straightforward results, there has heretofore been little work pub-
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lished in the literature which theoretically analyzes this assump-
tion in a quantitative manner. This note. therefore, addresses this
problem of analyzing the coverage capability of test sets for mul- 3'4-

tiple faults of sizes larger than that for which the test sets were
explicitly generated. 1

A particularly prominent aspect of this problem is the case in , -'
which a complete single fault test set is generated for a network 110-
and then used for the coverage of both single and multiple faults
in the network. The following example illustrates the tenuous
nature of such an approach. :'34_ ;i

Example i: Consider the 40-input, single-output, nonredun- X15- -- -
dant, combinational network, denoted as N. shown in Fig. 1(a. '16- 16=
Let K = 11, 3. 6, 8, 11, 13, 16, 18, 21, 23, 26.28, 31. 33, 36, 38) bea X1 0

set of v = 16 lines in N, and let T be the single fault detection test

set (SFDTS) consisting of the 56 input vectors shown in Fig. l(b). X _ I
Now it can be seen upon investigation of this network that T, alsox23 -  1,
covers every multiple fault involving any 2 and 3 of these 16 lines '2?.- - -
(indeed, this is expected [2]. [4]) and approximately 90 percent of
the multiple faults involving any 4, 5, and 6 of these 16 lines. 27-

However, if we consider the multiple faults simultaneously involv-
ing all 16 lines, then it can be seen (on the basis of coverage X30-
projection results to be later developed in this paper) that of the 3J_
2 " = 65536 such multiple faults, only 29822 of these faults are X '32-
covered by T,. That is. more than one-half of all the multiple faults 3 3 "J )

involving all 16 lines of K can be shown to be undetected by the
given T,. (It is interesting to note, incidentally, that no two or 37_6- --
more of these 2"' multiple faults are functionally equivalent.) 1-38-
Thus, we see that for this network and these 16 lines, the multiple I
fault coverage capability for the given T, is reasonable for multiple X0-
faults involving up to 6 lines, but that for the multiple faults of (a)
greater size, this capability is quite tenuous. input vecor X: , inu vecor X

The above example is not an isolated or rare situation as the 1 13, S. 11, 13, IS , (12. 18. 1. 31. 32. 38. 39,

perspective given by the results to be developed in this paper will 2 (1, 5. l. 13. 15 0  )0 14,. 16. 13. 33. 34. 36. 37)1
indicate. Accordingly, we are well motivated here to develop a 3 (8. 10. 16. 18. 20)0 31 313. 14. 17. 33. 34. 36, 3731

16, 10, 16. 18. 210
0  

32 (11. 12. 19. 31, 32. 38, 39) 1formal, systematic approach for evaluating the multiple fault 1 3,. .s,3. 15 0  33 3,. 8, 9. 1. 22. 28. 29,

coverage capability of test sets. (1 3. 51 ill 15)( 34 (3. 6. 7. 23. 24. 24. 2733

Finally, the fact that we deal in this paper exclusively with 7 36, 8. 10. 18, 201, 36 3. 4. 6. .1, 24. 2,28 (6 . . 1 0 . 1 6 . 2 0 3 o 3 6 1 , 2 . . 2 1 . 2 2 . 2 8; , 2

networks wherein only primary input fanout is allowed should '1. 2. 3. 4, 11. 13. 15)o 37 (11, 18. 19. 31. 32, 30. 39)1
not be viewed as overly restrictive. While it would be inappro- 10 (6 7. 8. 9. 16. 18, 2030 38 (13. 16, 3,. 33. 34 36,)1

priate here to detail the importance of their position in the general 1 13., 3. 5. 11. 12,3. 1
3 4

0 39 13. 14. 16. 33. 34. 36. 37),
12 36 , 1 30, 16, 17, 18, 191

0  40 311. 12. 18. 31. 32. 36. 19
1area of combinational switching networks, it is clear that such 13 2 3. 2. 31,. 33. 151, 41 (1. 2, 8. 9, 22, 28. 29),

networks have provided and will continue to provide a useful 14 (21. 25, 31. 33. 35)o 42 (3, 4. 6. 7. 24. 26. 27),

framework for the establishment of general results and guidelines 16 326. 30, 36, 38, 4010  44 13. . 6. ., 21. 22. 29)336 326, 30. 36. 38, 40(0 44 33. 2. 8. 9., 212. , 2. 1

in the field of fault analysis. Moreover, since the use of our results 1 7 21. 23, 25, 33, 35)0  45 (11. 12. 18. 19. 32. 38, 39 1
leads to somewhat of a warning regarding the projected multiple 1 321, 23, 25. 31, 35 0  46 (13. 14. 16. 17, 34, 36, 37),

fault coverage capability of test sets, these networks serve us well, 19 326. 28, 30. 38, 40)0  47 (13. 14. 16. 17. 3 9)iths son 1120 326. 24, 30. 36. 4
03

0  
48 (11. 12, 18. 19. 31, 32. 3;

as it has been shown [6]. [7] that the presence of internal fanout 21 321, 22. 3. 24, 31. 33. 353o 49 (1. 2. 8. 9. 23. 2,
should, if anything, decrease this coverage capability. It should be 22 26. 27. 28. 29. 36. 38. 40 0 3. 4, 6. 7. 23. 36. 27)
notedthat the class of internal fanout-free networks considered in 2 321. 23 25, 31, 32, 33, 

3410  1 3,. 4. 6. 7, 23, 24. 26(124 326. 28. 30. 36. 37. 38. 39)
0  52 31, 2. 8. 9. 21. 22. 26),

this paper is significantly more general than the class of tree 25 (2. 8. 9. 21. 23, 28. 29)I 53 11. 12, 18. 19. 31. 36. 291,
networks wherein no fanout is allowed. In fact, straightforward 26 4. 6,. 7. 23, 24. 26. 2733 54 313. 14, 16, 17. 33. 36, 3 ,

to determine complete multiple fault detection test sets 27 (3, 4, 7, 23. 24, 26, 27)1 55 313. 14. 16, 17. 33. 34. 36),methods 
26 (1. 2. 9, 21. 22, 28., 29 5 6 l1l. 12, 18. 19. 31. 32. 381,

for tree networks are well known [81-112).

11. PRELIMINARIES (b)
*X-i (e, e. '. e.)1 P E 10 1 implies that the 40-tuple input vector X, is such

An n-input, single-output internal fanout-free combinational that the components at the positions e ,.e.are all .and thecomponents at all

switching network in which primary input fanout is allowed will the other remaining positionsare .For example, X,, = (0. 1.0.0.0.0.0. I. 1.0.0..
be denoted in the following simply as N. For reference, each line 0.00 0. 0. 0. 00, 1. 1. 0.0.0.o0. 0. o o. 0. 0,0o.0.o, o.0.. 0.%

of N will be labeled with a distinct integer. Subsets of the set of Fig. 1. (a) Network for Exampl I. (b) Test Set for Example I

lines in N will then be denoted, for example, as I = {i5, "", i,
J = (j,- ",J.), or K = (ki, - ", k.). The n primary input variables The Boolean function in terms of the primary input variables
x 1, X2, " x. to N will be collectively denoted in general by an realized by any line, say, tin N, will be denoted by Y,. We will refer
n-tuple input vector X. We will use X, to signify a particular input to Y as the internal line variable for line I. Similarly. we can
vector to the network wherein each xj e Xj, 1 !5 < it is assigned succinctly describe the set of Boolean functions corresponding to
a specific binary vaiue of either 0 or I. the set of internal line variables of, say. the set oflines K = k1 , k2-.

..... 7
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k.,) as Yx = {Yk, " Yj. The primary output function of j). are considered as ordered vectors, such as (it, "". i,) and (ji,
N can, of course, be expressed entirely in terms of the primary .. , j.), respectively, and if the set K is accordingly ordered as (it.
input variables. However, for our purposes, it will be necessary to i2 , .', ',.JI.J2, j,), then the fault complex F5 will be isomor-
also express the primary output function in terms of internal line phic to the Cartesian product F, x FJ. Throughout this paper, the
variables. Accordingly, we let Z[X; Yx] denote the primary output above-mentioned ordering in sets 1. J, and K will be assumed for
function of N when it is written in terms of X and Yx. For exam- the sake of notational convenience. Also, we will write that
pie, if K = (1, 2, 3,4), the Boolean function Z[X; Yx] for a network FE = F, x Fj where it will be understood that elements of FX are
N might be written as ZIX; Yg] = (xli 2 YI + x3) (x )'2) + v-tuples.
xax3 V3 + Y + X2 X5. Obviously, we could also define r-partitions for r > 2. Indeed,

Given any set K of v lines in N, clearly, there are 2' possible this has been done in [5]. But the accompanying notational corn-
stuck-type fault events that can be associated with these v lines plexity outweighs the advantage of the more general statements of
wherein each of the lines is either stuck-at-zero or stuck-at-one. the results to follow. Moreover, these developments using only
This set of 2' such fault events on the set K of lines in N will be 2-partitions are a sufficient basis for such generalizations [5].
referred to as the fault complex on K and will be denoted as II1. ACTUAL AND PROJECTED COVERAGES
F5 = {t, Ej,'", 4)} where each a c F5 is described by a binary In this paper we will use T(aE) to denote the standard complete
v-tuple. In the presence of any fault event a' - FE in N, the result- test set for the fault event a E. This test set consists, of course,
ing faulty primary output function of N can be written as Z[X; of all those input vectors to N which can detect m, and can be
,,E]. Clearly, this is obtained from Z[X; YK] by simply replacing detailed, for example, as T(ag) = (X, I Z[Xj; YE] ( Z[Xd; ax] = 1).
the variables of YE in the function by their corresponding binary Given a set of input vectors, denoted as T, for N, we will be
values from a. In the following, whenever there are no chances of interested in the capability of T to cover (that is, detect) fault
ambiguity, a: will be used in place of ar to denote a general events in F5 . Accordingly, we will let ACE(T) _ FE denote the set
element of F,, vnsi i.Acrigy ewilltAKT xdnt h e

It should be noted here that because we are considering only of fault events in FE which are actually covered by T. In other
intshold notedhere ethatbek s e w e are a ein ony is words, ay e ACx(T) implies that T n T(aE) # 0. We will in the

internalfollowing refer to the actual coverage of T for F as being co-
allowed, it follows that there are dominating interrelationships pleew he FEtuld bekpi nd o rhamon th faltson he lnesof whch ndicte hatnotallplete when ACx(T) = Fx. It should be kept in mind, however, that
among the faults on the lines of N which indicate that not all ACE(T) is usually unknown, and it is the goal of this note to
subsets of lines of N are really of interest. Accordingly, we will consider means of determining or approximating ACs(T).
make the following two assumptions on the members of sets of Accordingly, in addition to actual coverage, we will be very
lines to be considered in this paper: first, we will assume that any much concerned in the following with what we will refer to as the
set of lines we consider, such as the set K discussed above, will not

contain primary input fanout stem lines; second, we will assume projected coverage of a fault complex by a test set. This projected

that any set of lines we consider will contain no two or more lines coverage will be an estimate of the actual coverage. Hence, rela-
which ayre o liesame patfrome rwimr inp to th rimry e tive to the above, we will let PCE(T) 9; FE denote the set of fault
which are on thbe a path from a primary input to the primary events in F& which are estimated to be covered by T where
output. It should be clear that these assumptions in no way re- PCE(T) will always be less than or equal to ACs(T). The process

strict the consideration of fault events of interest. It should also be of calculating PC,,(T) will be referred to as test set coverage
noted that because of these assumptions, it follows that the pri- oc tin and will be ered as test se co e

mar ouputfuntin ZX; E] oranysetK o liesof nteestin projection and can generically be described as follows. In themary output function Z[X; Yx] for any set K of lines of interest in network N, and for the set K of v lines in N, let I and J form a
N can be expressed such that each internal line variable for each 2-partition of K. Let T now be a set of input vectors whose (either

e K occurs exactly once in the function, either as ~, or as X1. actual or projected) coverages for the component fault complexes
Finally, it should be clear that because of this latter property of F, and F, of F5 are known. Test set coverage projection can then
Z[X; YE] regarding the single occurrence of each Y, a YE, for any be described as the process of projecting the coverage of T to FA
set K of lines in N, we have that Z[X; YK] can be written as a based upon our knowledge of the coverage of T for F, and F,.
function of Boolean subfunctions such that none of the Y, var- Accordingly, we will refer to the component fault complexes F,
iables appears in more than one of the subfunctions. and Fj as the basis or projection and to F& as the target fault

More particularly. let K be a set of v _> 2 lines in N, and let I and I St is of projection fa rgul tand J be disjoint, nonempty subsets of K such that I J = K. complex. In Section V, we will give a projection formula which
Consder hen he fllowngcan be used to project the coverage of a test set to a target fault

Consider then the following. complex.
Definition 2.1: The sets I and J are said to form a 2-partition of It should be noted here that the resulting projected coverage by

K if there exist two Boolean subfunctions, say. H[X: Y] and T of the target fault complex F5 would ideally be equal to the
M[X; Yj], such that the primary output function of N can be unknown actual coverage (that is, PC5 (T) = ACE(T)). If, indeed,
written as Z[X; Ys] = H[X; Y] * M[X Y, ] +- 0[X] where ". this is so, then in the following we will say that the projected
corresponds to either "+" or -- coverage of T for FK is exact. However, whether or not the

Example: If Z[X; YE] = (xii 2 YI + x3) (x, k2) + XX 3 ' + projected coverage is exact clearly depends on a number of fac-
{14 + X2 X5, then I = (1, 2) and J = (3, 4) form a 2-partition of tors. Certainly one of the leading factors is whether our knowl-

K = 11, 2, 3, 4), wherein HIX; Y1] = (xI xc2 Y, + X3)- (X. X2) edge of the coverage of T for the basis of projection is, indeed,
M(X; Y,] = x~x3 t 3 + Y4, and O[X] = X2XS. the actual coverage. But even if this is so, other factors such as

Because of the above-mentioned assumptions on the members the mechanics or the test set coverage projection and the relation-
of sets of lines considered in this paper, it should be clear that ships which exist among T and the fault events of F, and F,
given any set K of v 2 lines in N. there will always exist at least obviously also enter into this issue. This latter factor is the topic of
one 2-partition of K. This concept of a 2-partition will play an the next section.
important role in our coverage projection theory. Thus, it will be
convenient in the following to refer to each of the sets I and J as IV. CONSISTENCY AND TESTING DIRECTION

component sets of K. and to refer to each of the fault complexes F, In this section we will define two relationships between faults
and F, as component fault complexes of FE. Note that if the and test sets which will be seen to be central to test set coverage
component sets I, say, I = {i2, ...- , i,), and J, say, J = (J1.J 2.". projection from a basis to a target.
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Definition 4.1: A fault event at c F, is said to be a i-consistent Part 2: If Z(X; Yt] - (RIX; V,]" M[X; Y,]) + OIX]. then the
fault event for an input vector X, relative to the subfunction H[X; projection formula is the dual of Part .'
Y,] if RIX,- Y,] - P implies HX,; a,] - P where P e (0, 1). Although notationally complex in structure, the Projection

Accordingly, given any H[X; Y,] and an input vector X, to N, Formula will be seen to be quite useful in the next section.
we can determine the set of fault events Moreover. a rational for the structure of the Projection Formula

(and its associated complexity) can be provided for the reader by
F(X,) = laIHX,; Y,] - H[X,; a,] - M. taking the general perspective of path sensitization [7.] Note that

In other words, Ff(X) 9 F, is the set of all the P-consistent fault the equation for PCII (T) suggests that: a) for every a, e PC*t'(T
events of F, for X, relative to H[X; Y,]. Along similar lines, we we will have that every ax = (a,, aj), where a, e F,, will also be
now give the following, detected by T; and b) for every a, e PCYI(T, we will have that

Definition 4.2: Given a set of input vectors T to N and the fault every ax = (a,, a), where a, E F, will also be tested by T. With this
complex F,. a fault event a, e F, is said to be a (0 -, )-tested fault in mind, if we refer now to the network of Fig. 2, which is one
event for T if for some input vector X, e T, we have that Z[Xi; possible realization of the given Z[X; Yx], it is seen that because of
Y1] = 0 and ZfXi; a,] = 1. the oR gate at the output, if a fault, say, a, in subnetwork N, was

In other words, if a, is a (0 -- I )-tested fault event for T, then (0 -. )-tested by means of sensitizing line 1. then no fault in N 2
there must exist at least one input vector X, e T which makes the could desensitize this line and mask fault a,. Similarly, faults in
fault-free output of N a logical zero and the faulty output of N subnetwork N1 cannot mask (0-. 1)-tested faults of N2. The
when the fault event a, is present a logical one. In the following, above, then, gives a rational for the structure of the equation for
such input vectors will be said to (0 -- 1)-test a,. The above can PC°'(T) in the Projection Formula.
similarly be stated for (I -- 0)-testing. Similarly, consider the equation for, say, S1°(T) relative to the

Using Definition 4.2, we now supplement the notation in- network of Fig. 2. Assume that a, is a fault in N, which is
troduced in Section III by letting AC?'(T) and AC)O(T), respec- (I -*0)-tested by some X, in T. In other words, for this X,. line I
tively, denote the set of fault events of F, which are actually has the logical value of I when a, is not present and will be 0
(0 - 1)tested and (I - 0)-tested fault events for T. Clearly, otherwise, and line 2 will be 0 in both instances. Now, if a fault.
ACO'(T) u AC! 0 (T) = ACI(T). Similarly, we let PC?'(T) and say, a, occurs in N2 such that the value on line 2 remains at 0 for
PCI'(T), respectively, denote the set of fault events of F, which this Xi, then, clearly, Xi will also (1 -. 0)-test the fault ax = (a,, aj).
are projected to be (0 - 1 )-tested and (1 -, 0)-tested fault events From Definition 4.1, such an F, must belong to F°(XJ. Hence, all
for T. Clearly. PC?'(T) u PC,'(T) = PC,(T). the faults in ji) x {F'°(X)} will be detected by X. Moreover, the

Finally, given a fault event, say. a, e AC,(T), or a, PC(T), we above would hold true for every Xi e T which (I -- 0)-tests a,.
will use (T(a,) rn T)10 to refer to the set of all those input vectors Hence, the following set of faults will be (I - 0)-tested by T:
in T, each of which (I--. 0)-tests a,. (T(a,) n T)' can be in-
terpreted analogously. U ({a,) x FY(Xi)))

V. PROJECTION FORMULA Calculating such sets for all a, E PC) 0 (T) and unioning them pro-

In the last section, we defined two relationships, namely, con- vides the rational for the equation for S)*(T).
sistency and testing direction, between fault events of component It is important to note that the Projection Formula has an
fault complexes and test sets. Based on these two relationships. we inherent, recursive nature in the sense that the projected coverage
will now present a formula for obtaining the projected coverage of PCx(T) obtained by its use can then be used for determining the
a test set for any set of lines in N. We will then prove a fundamen- projected coverage of T to other fault complexes in N of which Fa
tal theorem which relates this projected coverage to the actual is a component fault complex. It should also be pointed out that
coverage. by virtue of this recursive nature, the Projection Formula can be

Projection Formula: Given stated more generally for r-partitions, r > 2 [5].
1) a set K of lines in N and a 2-partition I and J of K; and The following theorem is a crucial justification of the Projection
2) a test set T which is known to cover the set PC,(T) of fault Formula.

events of F, and the set PC,(T) of fault events of F,; Theorem 5.1: For the Projection Formula,
then the projected set PCx(T) of the fault events of FK covered

by T is given as follows. PC&(T) s ACK(T).

Part 1: If Z[X; Yx] = (H[X; Y11] + MIX; Yi]) + O[X], then Proof: We will prove this theorem only for the case in which
PCA(T) = PC2'(T) u PC°0 (T) PCx(T) is obtained by using Part I of the Projection Formula.

that is, for the case where Z[X; Yx] = (H[X; Y] + MIX; Y,]) +

where O[XJ. Note that since the equations in Part I and Part 2 of the

PC t (T) = (PC°V(T) x F,) Q (F1 x PCY'(T)) Projection Formula are duals, a proofof the theorem correspond-
ing to Part 2 of the Projection Formula follows similarly. The

and following preliminaries will facilitate the proof.
PCk0 (T) - S)'(T) u S1°(T) Let aA be a fault event of Fx. We know that ax e ACx(T) if and

where only T(ax) n T # #. Hence, to show that for every ag e PCx(T.T(aw) c T ) n , we will study the composition and properties of

a=C, 1tr , (t a , F')X'0 Now, there are many techniques by which T(a) can be
and

fNote that since O[x] does not cxpticitly play any role in the Projection Formula,
S,(T) \ U tFhe x aab)e of e,, x a duality in Z[X; YJ i,, Pars Iand 2 is not of importan c in out

*,q (,f Pt 
(

XTt (T T f$)DO considerations.)
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detailed, but an algebraic or functional approach which will be As before, for convenience, we refer to the left-side set of (6) as
most useful in our considerations is the Boolean difference SJP(T).
method wherein Combining (5) and (6) yields

T(a,) = {XiIZIX,; Y] E Z[X,; ax] = 1). PCI°(T) = S1°(T) u S °(T) E_ ACI 0 (T). Q.E.D.

Since in Part I of the Projection Formula we have that Z[X; In other words, we have shown in Theorem 5.1 that the
YJ] = (H[X; Yi] + M[X; Y,]) + 0X] and aK = (a,, a,) for some projected coverage PCx(T) obtained by using the Projection For-
a, e Ft and aj e Fj, we can also express T(ag) as follows: mula is a lower bound on the actual coverage ACx(T). This means

T(ax) = {X,I((H[XI, Y,] + M[X,; V',]) + 0[X,]) that the Projection Formula gives at worst an inexact coverage.
Consider now the particular case, wherein T is a complete

E ((H[Xi; a,] + M[X,; ai]) + 0[X,]) = 1). (1) single fault detection test set. In such a case, PCx(T) can be ob-
tained by a recursive use of the Projection Formula. That is, if

To show that T(ax) r- T x. Et e PCx(T), we must determine either PC,(T) or PCi(T) or both are not available, then the
T(a,) and T(aj. since out information about T is limited only to Projection Formula could first be used to calculate those unavail-
its coverage of the fault events F, and F,. As above, then, we can able projection sets. In fact, since we are dealing with a complete
obtain T(a,) and T(ai) as follows: single fault detection test set, such a recursive use of the formula

T(a,) = {X IZ[XI; Y,] i Z[X,; a,) =1 would continue until the component complexes being considered
are associated with single lines of N. It might now seem that for

= {XiI((H[X; Y1] + M[X,; YA]) + 0[X']) large K, such recursive use of the Projection Formula could lead

$((H[Xia,] + M[X,; Y] + O[X]) = 1) (2) to a poor PCx(T) as an estimate to ACR(T), but such is not always

the case, as is shown in the next section.
and

T(a.,) = {X.I Z[Xi; YI + Z(Xi; a,] = VI. ACTUAL AND PROJECTED COVERAGES REVISITED

In this section we will consider some cases to illustrate situa-
= {XI ((H[Xi; Y1, + M[X,, Y]) + O[XJ) tions in which the projected coverage can be shown to be com-

e{H[X,; 1',] + MIX,; a]) + 0[Xj) = 1}. (3) plete or exact relative to the actual coverage of the target faultcomplex.

With these details regarding the composition of T(m,), T(a4) We begin by giving the following theorem regarding corm-
and T(aj) in mind, we can now proceed to the formalities of the pleteness in the sense that situations can be specified wherein the
proof. To show that PC(T) obtained by using Part 1 of the projected coverage given by the Projection Formula will be the
Projection Formula is contained in or is equal to AC5 (T). we will entire target fault complex, that is, PCK(T) = F,. Doing so will
only consider the PCK°(T) subset of PCt(T). The theorem can not only give further insight into the Projection Formula, but will
similarly be proven for the PC*'(T) subset of PC5 (T). also reinforce/extend the principal results available in the litera-

Let a, be a fault event of F, in PCI 0(T). Furthermore, let Xj be ture [11-[4] regarding complete multiple fault coverage situations
an input vector in T which (I -*0)-tests a,. that is. for single fault detection test sets.
Xi e (T r) T(a,))10 . By Definition 4.2 for this X, we have that Theorem 6.1:
Z[X,; Y] = 1 and Z[X,; ail = 0. But more particularly observe a) Given any set K of lines and a complete single fault detec-
that from (2) this implies that M[X,; Yj] = 0[X] = 0, H[X,; tion test set T, for a cascaded two-level network, the projected
Y,] = 1, and H[X,. a,] = 0. Noting that we have M[Xi; Y] = 0. we coverage PCK(T,) obtained from the Projection Formula equals
now consider F°(Xi). the fault events of F, which are 0-consistent Fi,. (See [1].)
relative to MIX; Y,] for Xi. Letting aj - FY(Xi). we now direct our b) Given any set K of lines and a complete single fault detec-
concern to the fault event a, = (at, aj) of FK. Since, by the tion test set T, for an internal fanout-free network N, if the lines of
Definition 4.1. we have that M[Xi; Y] = M[X,; a,] = 0, it should K are inputs to three or fewer gates, the projected coverage
be clear that together with the above observations regarding (2), PC5 (T) obtained from the Projection Formula equals F5 . (See [2]
we have from (1) that Xi c T(aa), that is, T(ax) r T % 4. and [3].)
Furthermore, since Z[X; Yx] = I and Z[X; a#] = 0. we have also c) Given any set K of lines and a complete single fault detection

.that ax - ACK 0 (T). test set T, for an internal fanout-free network N, if Z[X;
The above is evidently true for all fault events of FK in fa,) x Y,]=J[X; Y]*M[X; Y,]+OIX , Ill = lK - 1, IJI = 1,

F°(X) corresponding to every X, a (T n T(a,)) 10 . In other and if T covers all the fault events of F,, then the projected
words. coverage PCK(T,) obtained from the Projection Formula equals

U ((at) x F,(X,)) - ACk 0 (T). (4) FA. (See [4].)
Itr T(,),o Proof: Given in (5], and available from the authors.

We will now consider some of those situations wherein the
Moreover, (4) is clearly true for every at, a PCIO(T). Thus, we Projection Formula is to be used, but the conditions of Theorem
have that 6.1 are not satisfied. Our concern now will be exact projected

I a) x FXJ)Q)) coverage. We start with the following.

U. ({,) x F ACk°(T) (5) Definition 6.1: Given a set K of lines, a 2-partition IandJofK,,,, C, JX,, *r (,,)),o and a set T of input vectors for N. If every X, e T is such that it
For convenience, we refer to the left-side set of (5) as S1°(T covers at least one fault event ofF, v F,, or if every X, e T which

We can similarly show that does not cover any fault event of F, u F, is such that it does not
cover any fault event of Fx as well, then T is said to satisfy the

U U (F°(X,) x {as;) - ACk°(T). (6) exactness requirement for F, and F, relative to FR.
5,* K,,r) x,, T(r,,)),O We will now prove a theorem which establishes a relation be.
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tween PCx(T) and ACE(T) when T satisfies the exactness that the actual coverage of T, for the projection basis is known.
requirement. and the exactness requirement on T for the projection basis rela-

Theorem 62: For the framework of the Projection Formula, if tive to the target complex is satisfied. Then, clearly, by Theorem
PC,(T) = AC,(T), PC,(T) = AC(T), and T satisfies the 6.2 it can be concluded that PCI(T) so obtained would be the
exactness requirement for Fl and Fj relative to Ft, then PCE(T) actual coverage ACE(T).
bbtained from the Projection Formula equals ACE(T). Example 2: Consider the network of Fig. I(a) and the set K of

Proof: We will prove this theorem (by contradiction) only for 16 lines mentioned in Example I. By using the Projection For-
the case in which PCE(T) is obtained by using Part I of the mula with T as the set of input vectors given in Fig. (b), it can be
Projection Formula as the other case follows similarly. We will shown that I PC(T,) I = 29 822. Furthermore, it can be seen that
also take advantage of the preliminaries established in the proof of the conditions of Theorem 6.2 are, indeed, satisfied for every
Theorem 5.1. execution of the Projection Formula, and therefore we have that

Thus, assume that in FE there exists a fault event PC5 (T) = AC5 (T).
When we consider those situations in which neither the condi-

t = (azs, ,) ci AC5 (T) = AC~'(T) u AC[°(T) tions of Theorem 6.1 nor the exactness requirement is satisfied, we

where simply know that PCx(T) is a lower bound to AC 1 (T). First of alL
it might be that this lower bound is quite close to complete cover-

a't c AC~'(T). but ct € pC~t(T) (7) age and, therefore, is acceptable in some applications. But more
or where importantly, when we have the situation where the exactness re-

quirement is not satisfied and when the projected coverage is too
CIE e- AC°(T), but ati 0 PCt°(T). (8) low to be acceptable with its uncertainty, then there is no recourse

We will nowconsider the implications of (8) and show that it but to utilize some classical means of determining the actual
leads to a contradiction. It can similarly be shown that (7) would coverage of T for FK.

also lead to a contradiction. VII. CONCLUSION
Suppose now that (8) is true. Then since cc Ki AC1°(T), consider In conclusion

any X, c (T n T(ax))"'. For this Xi we have that Z[XI; YE] = 1 In conclusion, our experience in using the Projection Formula
and Z[X; cia] = 0. But more particularly observe from (1) that on various internal fanout-free networks for various fault com-
this implies that plexes [5], [6] has shown that the common assumption that the

coverage capability of test sets is usually satisfactory for multiple
H[Xi: Y1i + M[Xi; Y] = I faults on sizes greater than that for which test sets were explicitly

and generated must be used with discretion, as it has been so seen that
even for such networks, the validity of this assumption is highly

H[Xt; a,] = M[Xi; a,] = 0XJ] = 0. network structure/test set dependent. However, it seems to be

Along these lines, suppose that H[Xi; Y1]- I and M[X,; possible to characterize the most difficult fault complexes for

Y]= 0. Then, clearly, Z[X,; Y,]1 = I and Z[X; atj = 0, so single fault detection test sets to cover by generic models [6]. This

a, ei ACP°(T). Furthermore, since we have by hypothesis that suggests that if such generic models could be avoided in the design

PC,(T) = ACI(T, then ai, e PCJ0 (T). However, since M[Xi; structure of networks, the overall coverage capability would be

Y,] = M[Xi; a = 0, then aj c F°(Xi). But this implies that enhanced. Indeed, in an extreme sense, this is the approach used in
ag E ({al) x PF(XJ)) c PCi o(T), which contradicts (8). Similarly, the results/networks reported in literature for which any complete
if we assume that H[Xi; Y] = 0 and M[Xi; Y] = 1. we are also led single fault detection test sets cover all multiple faults [1].
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Multiple Fault Detection in
Programmable Logic Arrays

VINOD K. AGARWAL

Abstract-The increasing recognition of PLA's as efficient and viable
modules for such purposes as microprogramming and design of sequential
controllers has led to a growing intefest in the development of optimum fault
detection test sets for these modules. It is now well known that a fault type %hich
is unique to PLA's is the class of contact faults. A single contact fault is the
spurious presence or absence of a contact between a row and a column of a PLA.

We consider in this paper the problem of determining the capability of complete
single contact fault test sets to cover multiple contact faults of PLA's. Our
approach consists of developing a model of PLA's which allows one to represent

a contact fault in a PLA as a stuck-at fault in the model of the PLA. Using this
model, it is shown that more than 98 percent of all multiple contact faults of
size 8 and less are inherently covered by every complete single contact fault test
set in a PLA. Applications of this model to stuck-at fault diagnosis are also
discussed.

Index Terms-Contact faults, masking, multiple fault detection, PLA fault

detection, PLA modeling, programmable logic arrays, single fault coverage.

1. INTRODUCTION

A programmable logic array (PLA) is normally used to implement
multioutput combinational logic by programming 'blank" arrays of
an AND-OR (or NOR-NOR) matrix [I ]. The economy and flexibility
accrued by using PLA's have moreover led to their growing usage in
such areas as microprogramming, sequential controllers, function
generators, and code conversion. The availability of field program-
mable logic arrays has furthermore provided the logic designer ad-
ditional freedom to program an array on the site by blowing fusible
links within the array. The reliability of these devices is therefore a
matter of considerable importance 121-15].

Accordingly, this paper is concerned with the problem of fault
dctcction (that is, fault testing) in PLA's. Since, conceptually, a PLA

is simply a collection of many two-level AND-OR networks, it may
be argued that a PLA can be tested by using the well-known tech-
niques [6] for testing AND-OR networks. However the memory-like
structure of a PLA not only leads to the usual stuck-at, bridge-type.
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and shorted-diode faults found in most combinational networks, but Xit also results in a unique type of contact faults not found in suchF =i ''~ 2 ; ; 1

networks. A contact fault (called a crosspoint fault in 2 and 3) and "'M
shrinkage and appearance faults in [4)) in a PLA is caused by the
spurious presence or absence of a contact (that is, a fusible link) be- Irl_,I(a)
tween a row and a column of the PLA. In a recent paper [2] by Os-
tapko and Hong. a scheme to generate a test set which detects the
presence of every single contact fault in a PLA is presented. More
importantly, it is also shown in their paper that any such test set for
a PLA inherently covers (that is, detects) most of its single stuck-at, cc
bridge-type, and shorted-diode faults as well. Similar results are 1 2 1 2 (b)
likewise obtained in 131, 141. 0 1 0 0 1

Nonetheless. since the single fault model does not account for all
the probable failures [71 of an LSI chip, it is clear that for high reli-
ability applications, PLA's must be tested under a more general X W1
multiple fault model. But it is equally obvious that the consideration
of various multiple faults which could possibly occur in a PLA would (c)
be extremely impractical. For example, in a PLA containing 16 input
variables, 48 product terms, and 8 output lines, there are only 48 (2
X 16 + 8) = 1920 single contact faults, but extremely large 21920 f2
multiple contact faults! Thus, as in the case of combinational net-
works, a practical compromise in such a situation would be to assume Fig. I. An AND-OR PLA example.
that a complete single contact fault test set for a PLA covers most of
its multiple contact faults as well. The aim ofour paper is to establish its multiple contact faults as well. We do this by developing a com-
the validity of this assumption. binational network model of the PLA such that each single contact

fault in it is functionally equivalent to some single stuck-type fault
I. CONTACT FAULTS AS STUCK-AT FAULTS in the modeled network. This model will be referred to as the SAE

network (stuck-at equivalent network) of the PLA.The logic implemented by a PLA can be very conveniently de- The SAE network for a PLA is best obtained by considering con-
scribed by a two-dimensional array of 0's and I's, which is often re- tact faults on input and output columns in separate manners. Ac-
ferred to as the personality of the PLA 12). The personality of a PLA cordingly, consider first the simple AND network shown in Fig. 2(a),
which we will consider in the following is simply a representation of and assume that input lines x and y correspond to some input columns
whether the contact between a row and a column of the PLA is a 0- of a PLA and the gate output line W corresponds to some row of the
contact or a I -contact, where 0-contacts and I -contacts are defined PLA. Since each contact on lines x and y can be in two different po-
by the following. sitions, there are four different "programming" configurations as-Definition 1: Given a row and an output column in a fault-free sociated with this AND gate, as shown in Fig. 2(a). To be able to
PLA, a I-contact (0-contact) will be said to exist between the row and represent a contact fault as a stuck-at fault, we will assume that each
the column if the link between the two is intact (correspondingly, is contact of a PLA is represented by an input Boolean variable in its
not intact, that is. electrically fused). SAE network, and that its value, 0 or I (as determined by Definition

Definition 2: Given a row and an input column in a fault-free PLA. 2), in the PLA is the value of the line which carries that Boolean
a 0-contact (I-contact) will be said to exist between the row and the variable in the SAE network. More particularly, suppose a. is a
column if the link between the two is intact (correspondingly, is not Boolean variable whose value is 0(I) if line x has a 0-contact ( -
intact), contact). Let b, be similarly defined with respect to line). With the

A two-input PLA with two rows and two output functions is shown introduction of these two new variables, W then becomes a function
in Fig. I(a). Using the above definitions, the personality shown in Fig. of x, y, a., and by. as shown in the K-map of Fig. 2(b). It is important
I (b) is obtained. Finally, Fig. I (c) illustrates the equivalent logic path to note here that a, and b,. do not depend on the values of x and y,
of w his PLA. but only on the contacts on those lines. Therefore, x. y. a. and b, are

We now formally define a single contact fault i four independent variables. Using now the straightforward KarnaughDefinition 3: A single 0-contact (-contact) fault is said to exist map technique we get
in a PLA if due to some failure, a 0-contact (1-contact) of the fault-
free PLA becomes a I -contact (0-contact) in the faulty PLA. W = (a. + x)(b. + y). (I)

Accordingly, the total number of single contact faults which could A network realizing (1) is shown in Fig. 2(c).
possibly occur in a PLA would simply be the number of entries in its Comparing the network of Fig. 2(c) with those of Fig. 2(a). we note
personality. For a single-input decoder PLA with n inputs, m rows, that depending on the values of a. and b., the former network can
and p output functions, this number is easily seen to be m(2n + p). be made equivalent to any one of the four "programming" configu-
Moreover, by generalizing Definition 3 to multiple contact faults, the rations of the later networks. For example, for the top-left configu-
total number of multiple contact faults of a given size, say r >. 1, is ration of Fig. 2(a), the equivalent network is obtained by assigning
seen to be (,(2, P)), and the total number of all single and multiple a. = I and b, = I. More importantly, this comparison also shows that
contact faults is a 0-contact (I-contact) fault on, say line x of a "'programming"

M ( )(n + p) configuration, can be represented in its equivalent network by simply
,~~'- 2 m(n+p) - i. assigning a stuck-at-I (stuck-at-0) fault to line o. In other words,

r= we have shown that the SAE network for a PLA's input columns can
Assume that T, uenotes a complete single contact fault detection be easily obtained by replacing each AND gate of the PLA with a

test set for a PLA; that is, T, is such that for each single contact fault corresponding network of the type shown in Fig. 2(c). This replace-
in the PLA, there exists at least one input vector in T, for which the ment in the example PLA of Fig. I results in the left part of Fig.
fault-free output of the PLA, on at least one output line, is different 4.
from the output in the presence of the fault. Similarly. let T, denote Similar to the above, the stuck-at fault representation of contact
a complete single and multiple contact fault detection test set for a faults on the output columns of a PLA is obtained by considering the
PLA. As pointed out in the previous section, the generation of an OR gate network shown in Fig. 3(a). Assume here that input lines N't
optimal T. is a rather impractical task, Therefore, our concern in and W2 correspond to some rows of a PLA and the gate output f
this paper is to determine the capability of a T, for a PLA to cover corresponds to some output line of the PLA. Moreover, as above, let
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Fig. 2. SAE network for AND gate.

Fig. 4. The SAE network for the PLA of Fig. I.

1 2 ------" . corresponding contact in the PLA. Thus. it should be clear that each

2"""~~t 2 (a) contact input line with the value 0(l) could contain only one fault of(a) interest, namely, sa I (saO), and that the other fault, saO (sat), on that
- 1 XJ lline would be meaningless. The resulting m(2n + p) single stuck-at

W---'I " faults of interest on these m(2n + p) contact input lines would, of
01 11 10 course, correspond to the m(2n + p) single contact faults of the PLA.

2 20Moreover, a multiple contact fault on a PLA would thus be repre-
000 0 0 0 sented by a multiple stuck-at fault on the contact input lines. For the
01 0 o (b) convenience of description in the remainder of this paper, we will,
N o 1 whenever there is no change of ambiguity, use the terms' "contact
10 0 0 1 fault(s)" and "stuck-at fault(s) on contact input lines" interchan-

gably.
Finally, it is important to note that although an SAE network of

a PLA is far more complex than its equivalent logic network (compare
t c) Figs. 4 and ) (c)],.a significant difference between the two represen-

tations is that whereas the former network represents the complete
V PLA structure, the latter network represents only the logic realized

Fig. 3. SAE network for OR gate. by the PLA.

Ill. MULTIPLE CONTACT FAULT COVERAGE

cl and c2 denote Boolean variables whose value is 0(l) if lines W, and As pointed out in the last section, each SAE network output line
W2, respectively, have a 0-contact (I-contact). Then the K-map [see is the output of an internal fanout-free combinational network. This
Fig. 3(b)) forfin terms of W1, W2, Ct, and c2 leads to the function observation immediately suggests the possibility of using various

f= 0tW1 + C2W2  (2) previously known results [81-[l1] about multiple stuck-at fault
coverage in internal fanout-free networks to determine the multiple

whose realization is shown in Fig. 3(c). contact fault coverage in PLA's. For example, it is well known that
Here again, one easily sees that depending on the values ofc, and in an irredundant, internal fanout-frec network, every multiple

c2, each of the four "programming" configurations of Fig. 3(a) has stuck-at fault of size 2 and 3 is covered by any test set that covers ail
an equivalent network in Fig. 3(c). Also, as above, a 0-contact (I- the single stuck-at faults of the network. Therefore. we immediately
contact) fault on, say, line W, of a "programming" configuration is get the following from this well-known result.
represented in its equivalent network as a stuck-at-I (stuck-at-0) fault Lemma I: Each T, of an irredundant PLA covers every multiple
on the c I line. Based on these developments, the SAE network for the contact fault of size 2 and 3.
example PLA of Fig. I finally results in the network of Fig. 4. For multiple stuck-at faults of sizes greater than 3, it is shown in

Some important points should be mentioned here before we use this I I I ] that the greatest lower bound on the capability of single stuck-at
SAE network model for multiple fault coverage analysis in the next test sets to cover multiple faults can be obtained by a simple table
section. First of all, note from Fig. 4 that although the SAE network look-up process. Thus. similar to Lemma I, this result could be used
contains fanout both at primary input lines and internal lines, the to determine the greatest lower bound on the multiple contact fault
internal line fanout does not reconverge. Therefore, when seen with coverage capability of a T, in a PLA. However, we now show in the
respect to any one output line, the corresponding subnetwork of an following that it is possible to obtain better multiple contact fault
SAE network is clearly an internal fanout-free network 1 121, 11 3) coverage bounds by using the concept of masking than by applying
consisting only of three levels (because now levels 2 and 3 can be previously known results.
merged into one level). Definition 4: Given a row, say W,. and an input variable, say x_,,

Second, note that an SAE network contains two types of primary let the contact between row W, and column i', be denoted by au, and
inputs: then regular inputs xi. x2. * ,x,, and m(2n + p) contacts let the contact between row Wi and column xj be denoted by b, where
inputs which correspond to m(2n + p) contacts of the associated a,, and bij e (0, 1I. Then Aj = (aij + Xj)(bij + x,) will be referred to
PLA. In the fault-free SAE network. each of these m(2n + p) contact as an internal variable for Wj in terms of x,
inputs is assigned a permanent 0 or I depending on the value of the An internal variable Aj, is simply a function of two contact input

. . .
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variables a, and b, and one regular input variable xs. Using this 1  x X2 2 i 3 '3 i4 x4 5 5 i6 '6 t
definition, the product function realized by each row can be conve-
niently written as 0ninl rte s*0 1 1 1 *1 1 1 0 1 1 1 1 1

W, = AjjAi 2  A,. (3)
0

I  
02

where I < i < m.

Similar to Definition 4, let the contact between an output column 1 1 1 04 1 1 1 1 1 it 1 0 1
fA. < k < p and a row W, be denoted by ci where cj E 10, 11. Then
the outputfA can be written as

fA = CAIW + Ck2W2 + + ckW,,,

= ck(AIlIA12 " Ai) + Ck 2(A 2 lA2 2 + A 2 ,)

+ ' +Ckm(AmAm2 "Am.). (4) f IN + '2'6

Definition 5: A single stuck-at fault, say aI, is said to be masked
by another single stuck-at fault, say a2, for an input vectorX, ifX, X1 - (2,1,1,1.1,0) tests a1 a1 02

tests a I, but does not test the simultaneous multiple fault ala 2.
With the help ofabove definitions, Lemmas 2 and 3 specify all the x2 = (0,0,1,1,1,1) tests 02

necessary conditions under which masking takes place in a PLA.
Lemma 2: A O-contact fault in a row of a PLA can be masked only x3 = (0,0,0,00,1) tests 0 3

by a i-contact fault in the same row.
Proof: Let a, be a 0-contact fault, say on row I and column x x - (1,1,0,1,0,1) tests a_4 Q3_ a

That is, AII = (aII + i)(bt' -xt) where a)I = 0and the faulta, 4  
3 4 e 1

causes A 1 to become (I + il)(b,I + xl). Since the aj = bij = 0 4-way masking cycle

combination is never allowed, we must have that b, = 1. Assume Fig. 5. PLA with four-way masking cycle.
further now that this fault a, is tested by an input vector X, E T,
through the output line, sayf,. Then since fault aa 2a 3a4 is not detected by the four input vectors, shown in Fig.

fl 
= ClI Wl + C1 2 W 2 + cl 3 W 3 + CtmWm 5, which detect the single contact faults a,, a 2, a3, and a4 . A similar

and W, = AtIA 12, " - A In. observation about multiple stuck-at faults of size 4 is well known in
the literature 19], 111].

X, can test at iff for input X,. we have This phenomenon of four-way masking cycle, which requires two
C2W2 = •= ciW, = 0 pairs ofa 0-contact fault and a )-contact fault on two separate rows.

is very crucial to the undetectabilityofa multiple contact fault bya
eil = I T, in an irredundant PLA.

A12 = A13 = Ain = I Theorem I: Every multiple contact fault in an irredundant PLA
is detected by any T, provided the multiple fault does not contain pairs

and A,= (0 + )(l + x 1) = 0 for the fault-free case and A =(I of a 0-contact fault and a I-contact fault on more than one row.
+ 1 )(1 + x1) = I in the presence of ai. Proof: Clearly, ifa multiple fault indeed contains pairs of a 0-

Let a2 be any other single contact fault in PLA. We now show that contact fault and a I -contact fault on only one row, say i, then every
unless a2 is a -contact fault on row 1, it cannot mask a,. To begin, other row in the PLA which contains component single contact faults
suppose that a2 is any contact fault on row i, i 0 1. Then since cI i W of the multiple fault must contain either all the 0-contact faults or
= 0 in the fault-free case, the presence of a2 would at the worst make all the I-contact faults.
cI Wj = I. But this would imply thatfi = 0 in the fault-free case and Now since row i contains a 0-contact and a I-contact fault pair.
f, = I in the presence of the fault a, a2, i.e., X, would also test the it might be possible, by Lemma 2, that the 0-contact fault is masked
double fault aIa2. Thus, a2 would not mask aI if a2 is on any row i, by the I-contact fault. Moreover, by Lemma 3. this I-contact fault
i 5 1. on row i might, in turn. be masked by some other 0-contact fault in

Suppose next that a2 is a 0-contact fault on row I. If this a2 were some other row, sayj 9 i. However, since by our assumption row j
on row I and any one of the output columns 2, 3.- , p, then it is clear does not contain any I -contact fault, it is clear from Lemma 2 that
that the presence of a2 woule never mask the testing of at through this 0-contact fault cannot be masked by any single contact fault
fl. Similarly, if a2 were on row I and any input column, say j, then component of the given multiple fault. In fact. it can furthermore be
we would have that the faulty A lj = I and, hence, that a2 does not seen from the proof of Lemma 2 that this 0-contact fault cannot even
mask a,. be masked by any multiple contact fault component of the given

Thus, we have shown that unless a 2 is a 1-contact fault on row I, multiple fault. Therefore, any test in T, which tests this 0-contact will
it cannot mask a,. Even though this proof is given only for the case test the given multiple contact fault as well. Q.E.D.
when a, is on an input column, a similar proof for a, on an output Although the condition in Theorem I is only a sufficient condition,
column can be easily provided. Q.E.D. it is easy to show that most multiple faults of interest, such as faults

Lemma 3: A I -contact fault in a row ofa PLA can be masked only of size 8 and less 17), are included in this condition. We begin by
by a 0-contact fault in some other row. showing that Theorem I implies that most multiple contact faults of

Proof: The lemma can be proven in a similar manner to Lemma size 4 are covered by each T,.
2. Theorem 2: Out of the total (,(2 +P) different contact faults of

These two lemmas are important because they specify all the size 4 in an irrcdundant PLA, at the most (T) • (n + p/2)4 faults are
conditions under which one contact fault may be masked by another not covered by every T, of the PLA.
contact fault in a PLA. Using these lemmas, the proof of Lemma I Proof By Theorem 1, every multiple fault of size 4 which does
is straightforward*[ 151. not form the four-way masking cycle is bound to be covered by each

Although Lemma I ensures that each T, covers all faults of sizes T,. So Theorem 2 would immediately follow if we show that the
2 and 3, a multiple contact fault of size 4 or larger might not be coy- maximum number of contact faults of size 4 with four-way masking
ered by each T, In fact, Fig. 5 contains an example of a simple PLA is (1) . (n + p/2)4 .

where four contact faults a,. 02. a3, a4 are such that a, masks a4, Let ataiaja, be one such contact fault. Since it must exist on
a4 masks a3, ai masks a2. and a2 masks at. Therefore, the multiple exactly some 2 of the m rows of the PLA, there are (') different pairs

4,
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of two rows which arc possible locations of it (2a, 4 . Let 1 ',1 and PLA. By lemmas 2 and 3. we then know that even if the I-contact
W,: be one of these (3'. pairs, and assume that it, and a2 exist on W,1  fault masked the 0-contact fault, the converse is never true. Thus, the
and (W3 and a 4 exist on W,2. The total number of contacts on each row double fault is sure to be covered by a complete single fault test set
is. of course, 2n + p. Let the number of 0-contacts and I -contacts, as long as the I -contact fault is detectable. However, if the I -contact
respectively, on row W,I be s, and 2n + p - sI, and on row Wi2 be fault is undetectable and it masks the 0-contact fault, then the double
s, and 2n + p - S2 where s, > 0 and s2 > 0. Assuming now that a, fault might not be detected by a complete single fault test set.
and a3 are0-contact faultsanda zand a 4 are I-contact faults, we note The above illustration can similarly be carried out for multiple
that all the different ways of having such aI, a2, ai3 , and a 4 on WiI faults of larger sizes. Thus, it seems evident that the multiple fault
and W,2 are coverage capability of a T in a redundant PLA will be highly de-

(st) (2n si) (12) (2n s2) pendent on the personality of the PLA and the redundant contacts.
In other words, no general results like Theorems I to 3 of the last
section can be specified for redundant PLA's. Nonetheless, one easily

= s,(2n +p - s))(s2)(2n +p -£2). (5) notices from the proof of Theorem I that any multiple contact fault,
which contains at least one detectable 0-contact fault component in

Clearly, the maximum value of the expression in (5) results when any row containing only 0-contact fault components, would always

2n + p p be covered by each T. Further work along these lines, however, needs
2 2s=  + 2 .  to be done.

Finally, the advantage of the SAE network models of PLA's in
It thus follows that the maximum number of contact faults of size areas other than the multiple contact fault coverage problem is worth

4 with four-way masking is (7) .(n + p/2)4. Q. E. D. mentioning here. Note, for instance, that a T, is basically an in-
For m = 48, n = 16, and p = 8, the number (2) - (n + p/2)4 is a complete, but very specific single stuck-at fault test set for a SAE

mere 0.03 percent of the total (-'12 +PI). Thus, 99.97 percent of all network. Thus, by taking into account the explicit structure possessed
multiple contact faults of size 4 are bound to be covered by each T, by all SAE networks, it can be easily proven that a T, in general will
in a typical irredundant PLA. cover most of the single stuck-at faults of a SAE network. Moreover,

Theorem 2 can now be generalized for multiple faults of larger it will then immediately follow that each T, also covers most stuck-at
sizes, as follows. For the proof of this theorem, see ( 15]. faults of sizes up to 8 [I J. In short, a T, for a PLA can be considered

Theorem 3: Out of the total (,r(2 +l'), r >4,different faults of size
r in an irredundant PLA, at the most (') -(n + p/2)4 ((24* ) a very effective test set for all single and multiple contact and stuck-at

faults are not covered by every T, of the PLA. faults of interest.
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reduced. This claim is best illustrated by considering a double contact 1151 V. K. Agarwal. "Multiple fault detection in programmable logic arrays."
fault, say a 0-contact fault and a I-contact fault, on some row of a Dep. Flee Eng., McGill Univ., Montreal. P.Q. Canada. Rep 79-4
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Generic Fault Characterizations for Table
Look-Up Coverage Bounding

VINOD K. AGARWAL. SENIOR MEMBER, IEEE. AND GERALD M. MASSON, SENIOR MEMBER, IEEE

Abstract-Given any combinational, internal fan-out-free network number of multiple faults involved, this compromise has had
and any complete single fault detection test set (SFDTS) for the net- little theoretical justification or investigation other than the
work, we consider in this paper the problem of determining the minimal establishment of such results as an SFDTS is a multiple fault
extent to which that SFDTS will cover multiple faults in the network.
The basis of our approach is the development of a generic perspective detection test set (MFDTS) for two-level networks or every
to multiple faults which uses a representation of such faults called an SFDTS in an internal fan-out-free network covers all multiple
L-expression. This perspective leads to a technique for obtaining the faults of sizes 2 and 3 1101-131. Motivated by the above, the
greatest lower bound on the multiple fault coverage capability of an authors previously introduced the concepts of the functional
SFDTS by means of a simple table look-up process. In addition to form of multiple faults 19] and of recursive coverage projection
generalizing previously known results regarding multiple fault cover-
age, two particularly interesting results obtained from this approach of test sets [101 to theoretically investigate more general sit-
are as follows: uations. These developments led to interesting extensions of

1) On the average, every SFDTS for an internal fan-out-free net- previously known results 1111 - ( 13] and new characterizations
work covers 92 percent of all multiple faults of sizes 8 and less. of some special cases of multiple faults. In this paper we con-

2) On the average, every SFDTS for an internal fan-out-free net- tinue this work by developing a general approach to quanti-
work covers at least 46.1 percent of all multiple faults. tatively evaluate the validity of the common, practical com-

Index Terms-Coverage bounds, coverage table, fault vectors, promise mentioned above. This approach leads to a technique
generic representations, L-expressions, internal fan-out-free networks, for obtaining the greatest lower bound on the multiple fault
single and multiple fault detection, coverage capability of a SFDTS on a set of lines by means of

a simple table look-up process. Two particularly interesting
[. INTRODUCTION results obtained using this table are as follows.

T HE increasing density of logic on integrated circuit chips 1) On the average, every SFDTS for an internal fan-out-
together with the emerging LSI design practice 1231 of free network covers 92 percent of all multiple faults of sizes

implementing sequential networks in the form of register to 8 and less.
register combinational logic have led to a renewed interest in - 2) On the average, every SFDTS for an internal fan-out-
various unsolved problems associated with the detection of free network covers at least 46.1 percent of all multiple
stuck-type faults in combinational networks. Perhaps the most faults.
basic of such problems is the generation of tests which effi- II. NETWORK MODEL AND NOTATIONAL
ciently detect the presence of multiple faults in a given com- PRELIMINARIES
binational network. The complexity of this problem stems from A. Network Model
the fact that in a network of p lines, there are 3P-I different
multiple faults which might exist. To combat this prohibitively For multiple fault detection purposes, it is convenient to
large number of faults, various concepts such as functional classify a single output combinational switching network into
equivalence [24] and fault collasping 125] have been devel- one of the following three classes:
oped. Testing algorithms 126], [27] based on these concepts Cl: Class of Fan-Out-Free Networks [1 ]-1, 1281: A
show that instead of considering 3P-1 multiple faults, it is network in which no line fans out to two or more lines is re-

possible to consider a smaller number of faults while still being ferred to as a fan-out-free network [see Fig. I (a)).

able to detect the presence of any ofthe 3P- I faults. However, C2: Class of Internal Fan-Out-Free Networks (81-[11]:
even the use of these algorithms does not provide a satisfactory In an internal fan-out-free network, fan-out is allowed on the

solution for large networks. primary input lines only [see Fig. I (b)].

A practical compromise often employed to alleviate this C3: Class ofReconvergent-Fan-Out Networks [121-1151:

multiple fault detection problem is to use a complete single A network from this class can have fan-out on any line [see Fig.

fault detection test set (SFDTS) for a network to cover its 1(c)].
multiple faults as well. However, again because of the large Clearly, CI c C2 c C3. The reason this classification

scheme is centered around the amount of fan-out present in

Manuscript received August 4. 1977; revised August 13, 1979. This work a network is that fan-out is the single most important factor
was supported by the Office of Naval Research under Contract N00014- which affects the complexity of generating test sets for net-
75-C- 1196. works. Indeed, networks of Class CI are the simplest to test

V. K. Agarwal is with the Department of Electrical Engineering, McGill and networks of Class C3 are the most difficult. In fact, very
University, Montreal, P.Q.. Canada.

G. M. Mason is with the Department of Electrical Engineering. The Johns simple and useful methods to generate M FDTS's for networks
Hopkins University. Baltimore, MD 21218. of Class CI are well known [4]-[71 in the literature. On the

.0018-9340/80/0400-0288500.75 © 1980 IEEE
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number of effective multiple faults under consideration. The
-- lJ implications of these two assumptions will be soon made ap-

pa rent.

B. Notational Preliminaries

To introduce the notational preliminaries used in the paper.
consider again the internal fan-out-free network, N, shown in

'2 ~Fig. 1(b). Let K = 12, 4, 6, 8l be a set of 4 lines in N. A simul-
213 taneous multiple stuck-type fault involving all the four lines

B) of K will be denoted as a binary fault vector aA: = (a2, a4, a6,
' 5 1 , as), where a,e, 11, uK, and i is an index parameter. Clearly,

there can be 24 different such fault vectors on K. The set of

*---I-fX_ J t.,,these 24 fault vectors on K will be denoted by FA = Ia, az,,
-,ail and referred to as thefaul complex on K. Whenever

possible, we will write aA instead of a'A, to denote a general
element of Fk.

Next, let Y2 = X2, Y4 = x3, Y6 
= x5, and YE = x7 be the

Boolean functions realized by lines 2. 4, 6, and 8, respectively.
q 4 -These I's will be referred to as line variables to differentiate

Fig. I. Illustration of three classes of networks. them from the primary input variables. The primary output
function of N in terms of the primary input variables, xi, x2.

• .X7, and the line variables, Y2. Y4. Y6.Yg, will be written
as ZIX; YxI, where

other hand, it is equally well known that the generation of an Z[X; YK = (51 "2 + x 2Y 4)(x 4)' 6 + i 6 Y8). (2.1)
M FDTS for a complex network of Class C3 can be a prohib-
itively difficult task. Y'A 

= 
W}2. Y4, Y6.Y81 and X = E1X. x 2. • . XT}. Given a specific

In terms of the capability of each of these classes of networks input vector, denoted as X,, the Boolean output of N will then
to realize Boolean functions, it is known 111, 131 that functions be Z[Xi: YK] when N is fault-free, and ZIXi, ,A] when a a,
which can be realized by Class Cl are very limited. However, e FK exists in N.
it can be shown that Classes C2 and C3 are complete in the Note that each Y, e YK appears exactly once in ZIX } 1 .

sense that every Boolean function can be realized by a network In fact, because of the two assumptions made earlier about the
of Class C2 and, therefore, also of Class C3. The advantage multiple faults in internal fan-out-free networks, it should be
of Class C3 networks over Class C2 networks is, of course, that clear that any set K of lines we consider will always be such
the former type of networks require fewer gates for the reali- that ZIX; 'A ] can be expressed in a form wherein each Y, c
zation of same functions. However, since Class C2 is a com- YA occurs exactly once in the expression, either as Y, or Y,.
plete class in the sense just mentioned above and since Class Such a form is referred to as the fan-out-free form 13]. In the
C2 networks are easier to manipulate than Class C3 networks following each Z[X; YAI will always be assumed to have been
from a multiple fault detection point of view, we will restrict expressed in the fan-out-free form.
our considerations in this paper to networks of Class C2 only. Definition I: Two sets, say, I and J are said to form a par-
This is not a severe limitation because each network of Class tition of K if I and J are disjoint sets of lines in N such that I
C3 can be converted toa network of Class C2 1131. Hence, our u J = K and there exist Boolean functions, say, HIX; Y11.
results can be exploited for the networks of Class C3 as MIX; Yj]. and O[X] so that ZIX; YA] = (HIX; Y,]*MIX;
well. Vj]) + O(X]. where * denotes Boolean OR, -+", or Boolean

Thus, let N denote an internal fan-out-free network such AND,

as that shown in Fig, I(b). For the convenience of analysis in Note that because of the fan-out-frce form of ZIX; YK].
this paper. we will make two simplifying assumptions on the each K will always have at least one partition. For instance,
line faults which can exist in such networks. First of all, since in our previous example, I = 12,41 and J = 16, 81 form a parti-
a stem fault [such as the one shown in Fig. I (b)] is functionally tion of K with HIX; Y] = (-x Y2 + x 2 Y4), MIX; Ys] = (x 44 6

equivalent to some branch faults (lines 2 and 3 s-a-I), we will + T6Y 8), and O[X] = 0. Using this concept of partition in a
assume that each multiple fault under consideration is such recursive manner, it is possible to define an ordering on any
that it does not include any stem faults. Second, since two or set of lines in N. More particularly, suppose that sets l and J
more simultaneous single faults (that is, one multiple fault) were some ordered sets I = (it, i2, ", i,) and J = (j, j2.
on the same path from a primary input to the primary output j,). Then the set K of which I and J form a partition would be
are collectively functionally equivalent to the single fault ordered as K = (it. i 2, . i,,.J.J 2. 'Jq). With this ordering
closest to the primary output on that path, we will assume that on K, it is possible to write ZIX; YK I such that each )', 6 },
each multiple fault under consideration is such that it has at appears in ZIX; Yx] in the same order (from left to right) as
the most one single fault on each such path. It should be clear the corresponding : appears in K. For a given K, such an or-
that these two assumptions do not in any way reduce the dered ZIX, Y. will be unique except for variations possible
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because of the associative and commutative properties of "+'" terconnectioln of line variables is not concerned with whether
and .".. or not a line variable is complemented, or whether primary

Another advantage of the ordering scheme is that the fault input variables are AN i)ed or OKed with a line variable.
complex on K can be very conveniently expressed in terms of Given the information on the logical interconnection of line
fault complexes on its partition sets. In particular note that if variables for a set K in N, by the generic representation of this
I, J, and K were ordered as mentioned above, then the Car- information we mean a representation in which no information
tesian product F, X Fj will be isomorphic to FK. Thus, for is kept of the particular line variables involved but only of how
notational convenience we will write that FX = F, X Fj these line variables are logically interconnected. Thus, the
whenever l and J form a partition of K. More generally, if A generic representation in the case of ZIX; YKJ = (i1 Y 2 +

F, and B g Fj,. A X B will represent a subset of FK. x 2 Y 4 )(x 4 Y 6 + 3 6Y8 ) is that there are two logically ANDed

pairs of two logically ORed line variables each. We will show
C. Motivation in the next section that such generic representations of any set

Let T, be an SFDTS for N, K be a set of lines in N, and of lines in any network can be conveniently expressed in terms
suppose that we want to determine all the fault vectors of FA- of L-expressions.
which are covered by T,. Since a Y e FK is covered by an Xi
iff ZX; YxI * Z[Xi; ad, it is clear that any method used Ill. L-EXPRESSIONS AND GENERIC REPRESENTATION
to solve this problem would directly or indirectly need all the
information contained in ZIX; YK]. However, because ZIX; A. L-Expressions

YK ] is inherently dependent off the particular K and N under An L-expression is an algebraic expression consisting of a
consideration, it is equally obvious that all such methods are given number of "L" symbols which are interconnected by
bound to be impractical for any general use. Thus our moti- commutative and associative "+" and "-" operators and pa-
vation is to develop a method which will utilize the minimal rentheses. More formally, we define L-expressions as fol-
possible information about K. N, and T,. and still be able to lows:
determine some reasonable information about the capability Definition 2."
of T, to cover FA. It will be shown in this paper that it is pos- a) (L) is an L-expression.
sible to determine the greatest lower bound on the number of b) If (P) and (Q) are L-expressions. so are ((P) + (Q))
fault vectors of FK covered by any SFDTS for N simply by a and ((P) (Q))
table look-up process. In other words, the information used c) Nothing else is an L-expression unless its being so
about K and N will be such that it can be tabularized for follows from a repeated use of a) and b).
general use. However, as a consequence of not using complete Two L-expressions are said to be "equal" or "'same" if one
information about Z[X: Yx ]. we will get only greatest lower can be made identical to the other by using commutative and
bounds on coverage, associative properties of "+" and ".", namely,

The main concept developed to obtain our results is that of (P) + (Q) = (Q) + (P)
the generic representation of logical interconnection of line (P) (Q) = (Q) (P)
variables. To first illustrate what is meant by the logical in- (P) + ((Q) + (R)) = ((P) + (Q)) + (R)
terconnection of line variables, consider again the set K = 12, (P) + ((Q) (R)) ((P) (Q)) (R)
4. 6, 81 of lines in N of Fig. 1 (b), wherein Z[X; Yx] = (£3 Y 2
+ x 2Y 4)(x 4Y 6 + 5 6 Ys). Given any two line variables, such as Thus, for example, ((L) + (L)). (L) is the same as (L) - ((L)

Y2 and Y4, when we refer to their logical interconnection we + (L)). For the sake of convenience, the use of parentheges in
mean the logical AND or logical OR operation which occurs writing L-expressions will be minimized whenever there is no
between them in the fan-out-free form of Z[X; Yx]. Thus, Y2  confusion. Moreover, we will replace all the "-' sign appear-
and Y4 are logically oRed, and so are Y 6 and Y8. But Y2 and ances by simple concatenations. Using these conventions, all
Y6 are logically ANDed, as are Y4 and Y6, Y 2 and Y8, and Y4  L-expressions consisting of 4 and less "L" symbols are shown
and Y8.This describes the complete logical interconnection in Table I.
of all the line variables for the given K, and can be succinctly Let L(v) denote the set of all L-expressions each of which
restated as follows: Y2 and Y4 are logically ORed and the two consists ofv -L" symbols. Each element of L(v) will be referred
together are logically ANDed with the logically oRed Y 6 and to as an L-expression of size v, and denoted as L,., i = I, 2, -,
Y8. As another example, let Z[X; YKI = (x, Y 2 + 3x4 Y3) for I L(v)fl. or simply as L, whenever possible. Note now from
K = 12, 31 in some N. Note that even though Z[X YA] is Table I and Definition 2 that for all v > I, there is an inherent
written in the fan-out-free form, the logical interconnection duality among all L-expressions of L(v). More particularly,
between Y2 and Y3 is that of NOR, which is not included in our we have that if L, = Lp + Lq (or, L, = L.L.). for some Lr
definition. By using the Demorgan's Law, however, Z[X; YA]I L(p) and Lq E L(q), p + q = v. then there exists the dual L-
can be rewritten as (xi + P2)(x 3 + 4 + Y3). indicating that expression, denoted L '. of L, in L(v) such that L4, = LrLd
the logical interconnection between Y2 and Y3 is that of AND. (correspondingly, L,4 = L" + 14), where of course L de L(p)
Thus, to use our concept it will be ?- 'umed in the following that and L e L(q) are the dual L-expressions of L, and L,. re-
Z[X; YV] is always written such that there is no complemen- spectively. An L-expression L, will be said to be essentially-
tation operation involving two or more line variables. Also note AND (essentially-OR) if L, = LpLq (L,. = Lp + Lq) for some
from the above two examples that this concept of logical in- Lp, and Lq. Clearly, each L-expression is either essentially-AND
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or essentially-OR but not both, and the dual of an essentially- for all possible sets oft, lines, in all possible internal fan-out-
AND (essentially-OR) L-expression is an essentially-OR (es- free networks, with which the associated L-expression is the
sentially-AND) L-expression. same, the greatest lower bound on the coverage will also be the

We end this subsection with the following two lemmas about same. Thus, if the greatest lower bound corresponding to each
the cardinality of the set L(v). For more details about the possible L-expression were recorded in a table, then given any
enumeration of different L-expressions the reader is referred set K of lines in any N, the bound may be obtained simply by
to 1171 and 191 wherein it is shown that the enumeration of a table look-up process. This general and simple use of L-
iL(v)I is the same as the enumeration of two-terminal se- expressions will be the result developed and validated in the
ries-parallel networks [181-[201. IL(v)l, for all v -< 10, is following sections of the paper.
listed in Table 11.

Lemma 1: Given any set L(v), v >_ 2, there are exactly JL(' IV. COVERAGE TABLE
- I)j essentially-AND (essentially OR) L-expressions in L(v) A. The Concept of a Coverage Table
each of which can be written as L,_ IL (correspondingly, as
L,_1 + L), where L,,EL(v - 1). Consider an internal fan-out-free network N, and a set K

The proof of this lemma follows from Definition 2. of u lines in N. Let T be any set of input vectors which detects

Lemma 2: For large r. IL(c)I -_ (0.43) X (3.56)' X c - 312 .  all 2v single stuck-type faults on K. (T, of course, could also

Thus, IL(L - I)l L- 0.28 IL(v)I. detect other faults.) Relative to N, let O{K,T) denote the
The proof of this lemma can be found in (191. number of fault vectors of FA also detected by T. Finally O(K)

be the minimum O(KT) for all such T in N. Since each
B. Generic Representation SFDTS for N automatically covers all 2v single faults on K,

Consider Z(X; YxJ = (56 Y2 + x 2 Y4)(x 4 y6 + Y6 Y8) for K it follows that at least O(K) fault vectors of FA: must be covered
12,4, 6, 81 in Fig. I (b). From our previous discussions, we by each SFDTS for N.

know that the information about the generic representation Suppose now that the L-expression associated with K is L,.
of the logical interconnection of line variables of YK in this case In Section IV-1B an algorithm is presented which, given an
is that there are two logically-ANDed pairs of two logically L-expression such as L,. determines a unique number, denoted
ORed line variables each. This informatiul is unambiguously as (L,.). In the next section we will prove that O(L,) is the
and conveniently represented by the L-exnression (L + L)(L greatest lower bound on O(K) in the following sense:
+ L) if each 'L" is assumed to stand for a line variable. More Propert' PI: Given any N and a set K of t lines with which
particularly, given any set K of lines in N, we can obtain by L, is the associated L-expression,
using the following procedure an L-expression from the cor-
responding ZIX; YA ] such that the resulting L-expression will
generically represent the logical interconnection of line vari- Propertyv P2: There exists at least one N with a set K of t
ables in Z[X; YK]. lines with which L, is the associated L-expression and

Procedure: Given a Z[X; YA I in the fan-out-free form, ILK
= c, first replace each literal ofX in Z[X; YK] by a "0" or "" (L) OK

such that the simplified expression consists only of all the r line In other words, each SFDTS of N covers at least O(L,.) fault
variables. Then, replace each line variable in the simplified vectors of FA. and there exists at least one N and an SFDTS
expression by "L". The resulting expression is the required for it which covers no more than 0(L,,) fault vectors of FA.

L-expression, L, e L(v). Thus, O(L,.) provides the greatest lower bound on the capability
It is obvious from this procedure and the fact that each Z[X; of any SFDTS to cover fault vectors of FA. Note that O(L,.)

YA- ] can be uniquely written in an ordered, fan-out-free form is the greatest lower bound over all possible sets of lines in all
that the resulting L-expression will be unique for a given set possible networks with which the associated L-expression is
of lines. Such an L-expression will be said to be the associated L,. Thus, it might happen in a general network that each
L-expression with K. SFDTS for the network covers more than O(L,.) fault vectors

In the remainder of this paper we will show that given a set of each set of lines with the associated L-expression, L, Re-
K oft" lines in any A'and its associated L-cxpression, L, it is gardless, our main interest lies only in the most general nature
possible to determine the greatest lower bound on the number of multiple fault coverage capabilities of single fault detection
of fault vectors of F, covered by every SFDTS for N simply test sets.
by knowing L,. An immediate corollary of this result is that The table in which all L-expressions and their corresponding
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TABLE III

V Li  811 vi 1 v Li 0 (L '

L 2 6 (LLL+L) (L+L) 56

((LL)L+L)(LL) 56
2 L+L 4 (LL+L+L) (LL) 54

LL 4 (L+L+L+L) (L+L) 56

3 L+L+L 8 t LL+L)L+L)(L+L) 112
LL+L 9 ((L+L+L)L+L)(L+L) 112
(LL)L 8 ((L+L)(L+L)+L)(L+L) 104
LLL S ((L-L)LL+L) (L+L) 112

4 L+L+L4L 16 (LLLL+L) (L+L) 112

LL+L+L 16 ((L+L)L+LL)(L+L 104

(L+L)L+L 16 (LLL+LL) (L+L) 106

LLL+L 16 ((L+L)L+L+L) (L+L) 112

(L+L+L)L 16 (LLL+L+L) (L+L) 112

(LL+L)L 16 (LL+LL+L) (L+L) 104

(L+L)LL 16 (LL+L+L+L) (L+L) 106

LLLL 16 (L+L+L+L+L) (L+L) 112
(L+L)(L+L) 14 ((L+L)L+L)(LL+L) 106

LL+LL 14 (L+L)L+L)(L+L+L) 104

5 (LL+L) (L4L) 28 (LLL+L) (LL+L) 106

(LL+L) (L+L) 28 (LLL+L) (L+L+L) 106
(LL+LL) (LL+L) 106

6 (LL+L) (LL+L) 54 (LL+LL) (L+L+L) 102

(LL+L) (L+L+L) 54 (LL+L+L) (LL+L) 100

(L+L+L) (L+IL) 52 (LL+L+L) (LLL+L) 102

(L+L+L)(L+L)(L+L) 52 (L+L+L+L) (LL+L) 106

(LL+LL) (LL) 56 (L+L+L+L) (LL+L) 106

(LL+L+L) (L+L) 106

(L+L+L) (LL) (LL) 102

O(L,.)'s are listed will be referred to as the Coverage Table. DI(Lp), D°(L9 ), and DI(Lq) are known by previous recursive
Table III shows the Coverage Table in a compact form (see use of this algorithm.
Section IV-C) for all L-expressions of size 7 and less. Various Step 3(a): If L, = Lp + Lq. set D°(L,,) = D°(Lp) X
ramifications of this table are considered later in the paper. D°(Lq) and DI(L,,) (DI(Lp) X S.) u (S. X DI(Lq)).

Step 3(b): IfL,. LpLq, set DO(L.) = (DO(Lp) X Sq) u
B. O(L,.) Calculation (S, X D°(L,)) and DI(L,) = DI(Lp) X DI(Lq).

To determine O(L,), we give the following algorithm in Step 4. Let D°(Lv) be the set of all those cubes of DO(L,.)
which the reader's familiarity with the cubical complex each of which has a "0" in the tth coordinate position, where
notation [211, [221 is assumed. I = 1, 2, '. t Similarly, let D) (L,) be the set of all those cubes

of DI(L,) each of which has a I in the tth coordinate position.

Coverage Algorithm: Moreover, let P°(L,,) denote an SR of the family ID?(L),
DD(L,,). •,(L,.)} and P'(L,.) an SR of the family ID,(L,.),

Input.- L,. an L-expression consisting of v L's. D(L.), . D(L)j. Finally, let JCJj denote the number of

Output: O(L,.), the greatest lower bound on the minimum 0-cubes in a set, C, of cubes.

coverage. StepS: Let P5i(L) be an SR such that IP,n(L)I <

Comments: This algorithm uses two sets of v-dimensional I P(L,.) for every SR P(L). Similarly, let I be an

cubes denoted, respectively, as D0 (L) and D (L1 ). These sets SR such that P(L,.) I < lIP'(L1 )I for every SR

are determined by a recursion. This recursion will at times p(L)"
utilize the r-dimensional unit cube S, = (xx . x). r > S.Step 6: O (L,.) P i}e,,L,.)] + ]P',,,(L,.)II

r Stop.
Two families of subsets of DO(L,) and D'(L,.) are next found, The following example illustrates the algorithm.
and magnitudes of two sets of representatives (SR's) for these Consider L, = (L + L)(L + L). r = 4. Letting L, = L + L
families finally provide the required O(L,,). A set of repre- and L= L + L, we first determine D°(L + L) and D'(L + L)
sentatives of a family of sets of cubes, say 10 , C 2, . C"j is and then use these sets to determine DO(4.) and D'(L,). Thus,
defined as a set of cubes C = ICI, C2. ,1 such that for each from Step 3(a)
set C. I < i < n, there exists at least one element, say, cj in D°(L + L) = D°(L) X DO(L)
C which also belongs to C. = (00)

Method. and
Step !: lfr = l, set D°(L,.) = (0) and D(L,,) = (1). Go D(L + L) = (D'(L) x 5,) u (S, X D(L)

to Step 4. = (ix, xl).
Step 2: ifv > 2, let L. and Lq. p + q = v. be such that L,

L, + Lq or L, LpLq. Furthermore. assume that D0 (L,), Now using Step 3(b) next, we have
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D°(L,) = (D°(L + L) X S2) u (S 2 X D°(L + L)) one-half of these IL(v) - 21L(v - ) L-expressions. In other

(OOxx. xxOO) words, it is sufficient to list in thc table entries for only '/2IL(v)I

and - IL(v - I)j of the L-expressions of size v. By Lemma 2, this
DI(L,) DI(L + L) X D'(L + L) means we need to explicitly list only 22 percent of all the entries

= (I xIx, I xx .x I I x, x IXl for L(v). t

Moving on to Step 4 yields D. Applications of the Coverage Table

D'(L.) = D°(L,) = (OOxx) The most straightforward use of the Coverage Table is, as

D°(L.) = D°(L.) = (xxOO) pointed out before, to determine the greatest lower bound,

DI(L,) = (lxix, lxxl) O(L,), on the number of fault vectors of FK covered by any

D2(L,) = (x I I x, x I x I) SFDTS in any N for any set K of lines with which the associ-

D1(L,) = (Ix lx, x Ix) ated L-expression is 4. Thus, for example, note from Table

and I II that since O(Lv) = 2 =F K I for all L, v -< 3, we can state

D4(L,) = (lxxl, xlxl). the following.
Lemma .5: Given any SFDTS, say, 7, for any internal fan-

Note that there is only one SR of the family ID '(L,). - out-free network, N, T, covers all the multiple faults of sizes
D°(L,,)I namely, P' j.(/) = (OOxx, xxOO). However, there are 2 and 3 as well.
various SR's of the second family. Examining the possibilities This, of course, is a previously known result [10]-[12];

shows that the two candidates for Ptfl(L,) are (Ix Ix, xIx 1) however, the generality of the Coverage Table approach gives
and (x I x, Ixxi ). Thus, we finally get that this result a new perspective. To illustrate further, note from

O(L,) = IIP;,,(L,)II + IJP rin(L)I I Table IlI that any SFDTS for N will also cover all the multiple

= 7 + 7 faults of size 4 except for the cases where the L-expression

= 14. associated with a set K of 4 lines is either LL + LL or the dual
(L + L)(L + L). Moreover, even in these two cases, it can be

From this example (and anticipating our proofs in the fol- seen from the table that at least 14 out of 16 fault vectors of
lowing section that O(L,.) so calculated does, indeed, have FA' will necessarily be covered by each SFDTS. A similar ob-
Properties PI and P2), we can conclude here that for any set servation about L-expressions of size 5 together with the above
of 4 lines which are generically represented by (L + L)(L + observation leads to the following:
L) in any internal fan-out-free network, any set of input vectors Lemma 6: Given any SFDTS, say, T, for any internal fan-
which detects all of the 8 single faults on these lines also detects out-free N, TS covers at least 14 out of 16 fault vectors on any

at least 14 of the 16 multiple faults involving all 4 of these set of 4 lines and at least 28 out of 32 fault vectors on any set
lines. of 5 lines in N.

It should be cited that the most difficult aspect of the im- Similar observations could, of course, be made regarding
plementation of the Coverage Algorithm is clearly the ex- multiple faults of larger sizes.
haustive step of determining P,() and P,,,(L1 ). However, Another interesting type of use of the Coverage Table is to
since each O(L) entry in the Coverage Table must be calcu- perform what we will call coverage averaging. This involves
lated only once, such complexity is amortized by its general the use of the Coverage Table to determine the average ca-
use. Moreover, this situation is alleviated somewhat by the pability of an SFDTS to cover all the multiple faults in a given
consideration of the following subsection. network of some predetermined size. To do this we make the

C. Compacting the Coverage Table assumption that each L-expression LEL(v) is equinumerous

Note from Table II that there are 24, 66, and 180 L-ex- in N. We can then calculate

pressions of sizes, 5, 6, and 7, respectively. Yet, for these three i O(L1 )
sizes only 2, 9, and 24 L-expressions. respectively, have been AVG O(L,)] = L(v)
listed in Table Ill. This is a result of the following two lemmas, 2'IL(v)
the proofs of which are omnted here but are directly based on This quantity represents the average value of 0(4) over allthe Coverage Algorithm I 7j.' hsqatt ersnsteaeaevleo (,)oe l

Lemma 3: if L. = L,,L (orL. = L, + L). then 0(L,)'s of fixed size v, divided by 2v. With an equinumerous
assumption, we can then conclude that in any network N, on

O(L,-) = 0(L,-,) + 21-'. the average AVG[O(L,,)] of all multiple faults of size v will
Lemma 4: 0(4,.) = O(L"). where L4 is the dual L-expression necessarily be covered by every SFDTS for N. A graph which

of L,. I shows the values of AVG 10(L,,)] for all v < 8 is given in Fig.

From Lemmas I and 3 it follows that for each set L(v) it 2. The following theorem is a direct conclusion from this
is sufficient to calculate O(L,.). L,.(L(v), for only jL(v)j - figure.

21L(v - I)1 L-expressions of size v. Moreover, from Lemma Theorem 1: On the average, an SFDTS in an internal fan-

4 it follows that O(L) must actually be calculated for only out-free network covers 92 percent of all multiple faults of sizes
8 or less.

I For iliustrative purposes Lemmas 3 and 4 have not been used in com- Clearly, the validity of this theorem depends on the validity
pacting Table III for L-expressions of si7c 4 and less. of the equinumerous assumption mentioned above- however.
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AVG le'I,') 0)-tested fault vector forXi ifZX,, Y] Y I and ZIX,; "A ]
-0.

.0 0.97 093 Definition 4: Given an input vector Xi to N, a fault vector
I.0 (4:(FA will be said to be a 1-consistent fault vector for X,.92 . relative2 to AIX; YKI if AIX,: YxI = AIX, a =J 01/3 0,

0.461 11__ _ __ _ _ _ __ _ _ _i.

Clearly, a fl-consistent fault vector is such that the Boolean
______________ value of A IX, Y I for X is not changed by the presence of aK.

3 For example, if A IX; Yx I = X I Yi + x 2 Y2 for K = 11, 21, and
Fig. 2. AVGIO(L,)l fort < 8. Y 1 = X3 and Y2 

= x 4, then aA = (0, 1) is 0-consistent for Xi
= (1001). Similarly, the fault (0, 0) is also seen to be 0-con-

consideration of large general internal fan-out-free N indicates sistent for Xi.
that the assumption is not unduly restrictive and that for many It is shown in 1 101 that the concepts of Definitions 3 and 4
networks of interest this theorem is quite applicable. Moreover, are of fundamental importance in determining the exact
if the equinumerous assumption were not valid for a network, coverage of fault vectors of FA, by input vectors which are
a weighted coverage averaging could be performed. known to cover fault vectors of F, and Fj., where I and J form

Now, this theorem together with some recent results by a partition of K. In this paper, we use the same concepts instead
Goldstein 1161 represent a quantitative affirmation of the to obtain the greatest lower bound on the exact coverage. The
common speculation that, at least in internal fan-out-free main difference between the two approaches is that whereas
networks, SFDTS's cover most multiple faults as well. More in 10] the complete functional information contained in Z[X;
specifically, Goldstein 116] has shown by exploiting statistical Y] is used to calculate the exact coverage, we use in this paper
information relating to physical defects and chip layout data only the information contained in the associated L-expression
that for most networks consideration of multiple faults up to to calculate the bound. To illustrate the difference, consider
size 8 is sufficient for multiple fault analysis. Of course. for a set of K of lines such that Z[X; YK] = H[X; Y,] + MIX; Yj]
networks where the consideration of at most 8 faults is not + OIX]. Let (altF be a (I - 0)-tested fault vector for some
sufficient, Theorem I could be accordingly extended. Xi. In other words, ZIXA; YV] = I and Z[X; a,] = 0. Since

A very useful result obtained by coverage averaging under ZIX; Y/] is the Boolean function realized by N, it is the same
the equinumerous assumption for Ia.ge networks is the fol- as Z[X; Y] = H[X: Y',] + MIX; YJI + OIX] if all YYeYj in
lowing theorem. MIX; Yj] are replaced by their equivalent primary input

Theorem 2: For all v > 1, AVG[(L,,)] > 0.461 Boolean functions. Thus, it follows that
A proof of this theorem using the asymptotic nature of O(L,.)

is derived in [17]. The implication of the theorem however is
that on the average at least 46.1 percent of all multiple faults and
are covered by each SFDTS in an internal fan-out-free net-
work. This is the first quantitative result which provides an HIX,; a] + M[X1; V.] + OI] = 0.
estimate of the capability of SFDTS's to cover all multiple That is, H[Xi; Y] = I. HIX; a/ I= 0, MXi; Y.,] = 0, and
faults in networks which are more general than restricted O[Xi] = 0.
fan-out-free networks [13], the largest class of networks for Next, let (rj(Fj be a 0-consistent fault vector for Xi relative
which it is known that every SFDTS covers all multiple to M[Xi,: Y.]: that is, M[Xi: Yj] = MIX,; aj] = 0. It is then
faults. easily seen that a. = (a,, aj) is also a (I -- 0)-

V. JUSTIFICATION OF 0(L,.) tested fault vector for X. In other words, we have that if a, is
a (I -- 0)-tested fault vector for X,. acj is any 0-consistent fault

In this section Properties PI and P2 of 0(L, ) which were vector for X, and ZXA YKA = H[X, Y11 + MIX; YV] + OX].
described in the previous section and which justify our asso- then ax = (a,, a) is also a (I -- 0)-tested fault vector for Xi,.
ciated claims regarding O(L,) will be considered. PI will be More specifically, if we define
proved in Section V-A and a procedure to construct a network
for any L,, such that P2holds will begiven in Section V-B. In GK9(Xi) laxiZIxi: Y ] 1 andZlX,; a] = 01
the following, our arguments for convenience and with no loss and
of generality will be developed under the assumptions that the F0 (Xi) = Ia Mg[Xi; Y.,] = MIX,; aj] 01,
set K of lines being considered is such that each Ytt YK appears
in ZIX; Yx] in the uncomplemented form only, and that the then for the above example we have that
set K = II. 2,. , vi. a,(X ) = GJ°(X ) X F OtX ). (5.1)

We start with the following two definitions which were in- AX X
troduced in [10]. By recursively using relations such as (5.1) above, it is

Definition 3: Given a set K of lines in N and an input vector
xi to N a fault vector aXFi will be said to be a (0 - )- 2 AIX; A I is used todenotc a general Boolean expression in the fan-out-free

tested fault vecrfor Xj if ZIX,; YK =0 and ZIX, a, forn in terms of the variables ofX and YK. In particular. A IXI',- I could be

I. Similarly, a fault vector at F, will be said to be a (I the same as ZIX" Yxl.
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possible 1101 to determine the exact coverage of /'A by an + A21XJ for some A 1 X} and A 21X}. Given now that AIX,:
SFDTS. This approach, howevcr, is not very practical because Y1 I = Aj, X,] ' + A2 1X,I = 0 (or I) for some X,, it immc-
sets such as F(X,) are highly dependent on the particular X,. diately follows that A I IXja + A 2iX, = 0(1) for it =0 0().

J. and MIX; Yj] under consideration. That is, F .(X,) Q 11. Recalling now from the Coverage Al-
It turns out though, as will be shown in the following, that gorithm that Dt(L, ) = (13) for c = I, we have that Lemma 7

it is possible to determine a subset of Fj(A,) simply by knowing is true for v = I.

the L-expression associated with J. That is, the generic in- Assume now that the lemma is true for every set K of I. 2.
formation of logical interconnection of line variables of Y in -, and v -I lines, where v >, 2. Based on this assumption. we
MIX: V.} can be suitably exploited to obtain a subset of will now prove that it is also true for every set K of v lines.
Fil(Xi). Since such generic information, namely the associated Thus. let K be a set of V' lines and L, be the L-expression as-
L-expression with J. is independent of the particular X,. J. and sociated with K relative to AIX; YA]. Let I and J form a
MIX; Yj] under consideration, such subsets can clearly be partition of K such that A[X; YxI = (AIIX: Y,1A 21X YJ)

used in infinitely many different situations. + O[X]. Thcn, clearly, L, = Lp * Lq. where Lp(L,) is the
Furthermore, it is also possible to show that a subset of L-expression associated with 1(J) relative to AI[X; Yj](A2IX:

Gj°(A) can be obtained simply by knowing the L-expression Y.,]). We will prove the lemma only for the case where -'*" is
associated with 1. Using these two results, it then follows from "+'- and J3 = 0. The proof for the remaining cases follows
(5.1) that a subset of G9(A;*) can be obtained by using the analogously.
L-expression associated with K. In fact, the Coverage Algo- Thus, let X, be such that
rithmofthe previoussection does exactly this, as weshall prove AIX,; YA] = AIIX,; Y11 + A 2[X,; Y] + OIXi] = 0.

in the following two lemmas. It should now be clear, however,
that the greatest lower bound on the exact coverage of FA is Then clearly,
directly related to such subsets of G°'(X,) and G'(Xi). XiET. AdXi; V,] A 2[X; V] COX] = 0. (5.2)

We will consider more details of this in Sections V-A and
V-B. Now, let al be a 0-consistent fault vector for Xi relative to

Before presenting the two lemmas, it will be convenient to A3IX; V,]: that is, let aFO(Xi). Similarly, let ajFJ(X,).

introduce some notation here. Because of the generic approach Then by Definition 4.

we are taking, we will represent fault vectors and fault com- AlA,: a/] = OandA2 lXi: ai] = 0. (5.3)
plexes in the following by using the same cubical complex Using (5.2) and (5.3), it is then easily seen that if aA = (a,
notation as is used in the Coverage Algorithm. In this notation, aj). then since
a fault vector, say, a . will be considered as a v-dimensional
0-cube. The fault complex FA will then simply be the r-di- AIX,. ax] = A1 IX,; a/] + A2[Xi aj] + O[XJ] = 0.

mensional unit cube (xx • - x). Moreover, a subset of FK is Therefore oa must be a 0-consistent fault vector for X, relative
then represented as a set of various cubes in the r-dimensional to A IX,; YA. In other words, we have proven that if aeFt(Xj)

unit space. The use of these notations will be clearer as we and aj(F9(X,), then aK(F°(X). That is,
proceed. F°(Xi) X F°(Xi) c F°(Xi). (5.4)

Lemma 7: Let K = I, 2, ,v be any set ofv lines in N and
let AIX: YK] be a fan-out-free form Boolean expression. Consider now the sets DO(Lp) and DO(Lq ). By our induction
Moreover, let L,. be the L-expression associated with K relative hypothesis we have that there must exist at least one cube, say,
to A IX; YK 1. Then given any Xj, A [Xi, Y/AI = 0, there exists ciD(Lo) and another cube, say c 2cD°(Lq) such that the 0-
at least one cube, say, cfDf(L,.) such that the set of 0-cubes cubes of c, and C2 are contained in F5°(Xi) and Fj(Xi), re-
ofc is contained in or equal to FO (Xi), /3d0, I. spectively. It then follows from (5.4) that the 0-cubes of the

Before we enter intoa formal proof, the scope of this lemma cube (cic 2) will belong to F(x(Xi). However, from Step 3(a)

should be emphasized again. Recall that in the Coverage Al- of the Coverage Algorithm it is seen that (C1C 2)(D 0 (L,,).
gorithm, the set of cubes DO(L,.) is determined with no refer- Q.E.D.
ence to a particular network N, or a particular set K of lines, Leninia 8: Let K = 11, 2,., vi be any set of v lines in N and
or a particular input vector X,. Indeed, we only considered a let L,, be the L-expression associated with K. Moreover, let XA

set of v lines in any N whose logical interconnection was gen- be an input vector which (0 -- 1 )-tests (or (I -- 0)-tests) the
erally represented by L,. Yet, in spite of the generality under single fault a, = I (correspondingly, a, = 0), tcK, on the lines
which DO(L,.) is generated, we nevertheless are stating in of K. Then there exists at least one cube, say,
Lemma 7 that this set of cubes contains a subset of F19(Xi) ccD,1(L,,)(cED?(L,.)) such that the set of 0-cubes ofc is con-
where, by definition, in this latter set we are referring to par- tamed in or equal to GOT (Xj)(G'0(Xi)).

ticular N. K, and X,-and this result holds regardless of the Lemma 8, like Lemma 7. makes a fundamental connection
particulars. That is, it holds for each of the infinite number of between the generic, D9(L,.), /30, 1i, and the specific. GO.1(Xi)

cases in which L,. can be associated with some set of lines in and GV°(Xi).
an internal fan-out-free network. Hence, Lemma 7 makes a Proof: First of all note that because of our assumption
fundamental connection between the generic and the specific that each Y),t V appears in ZIX; Y} in the uncomplemented
which is at the very center of all our results, form, it follows that the s-a-0 fault on any single line uK (that

Proof: Let v= 1. Then K III and A IX' YV] A I[XI V1  is, the faulta = 0) will always be (I -- 0)-tested by any XA

W
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which tests this fault. Similarly, the fault a, = I will always - )-tests the single fault a, = 0, where, of course, all these
be (0 --* 1)-tested by each X, which tests it. In other words, vectors might not be distinct vectors. Recalling that
Gl, (X,,) = (0) and GIA,(X,) = (I) for every tK.
To prove the lemma now, let K = I and v = 1. Then since U GK(X,) GK(T,)

DI(L.) = (I) and D(4.) = (0) from the Coverage Algorithm, rotf G =
Xt T,

and since G' (X) = (I) and G(X) = (0) as discussed above,

the lemma is clearly true for v = I. it is then clear that
Assume now that the lemma is true for all sets of I, 2,- --,

v- I lines. Consider thenaset K = 1l,2, .,viofv lines. Let U G°'(X?') U G ' O -_ GK( T ). (5.9)
iandJforma partition of K. where I = 1,2, .,piandJ= for all for all
lp + l,p + 2, .,p+ q},p + q = v. Let L = LF * Lq bethe

L-expression associated with K such that L,(Lq) is the L-
expression associated with 1(J). We will now prove the lemma Consider now Lemma 8. For each tiK, let co| be a cube in
for the case wherein D1 (Lv). all the 0-cubes of which are contained in G° I(X?').

Similarly, let c0 , IfK, be a cube in D(L,), all the 0-cubes of
Z[X; Y = H[X; YJ + MiX; Yjj + O[X]. (5.6) which are contained in GK0(X 0). Then, it follows from this

Xi (I - 0)-tests a, - 0, and ifl. The proof for the remaining lemma that
cases follows in a similar manner. Recall here that for the case
mentioned above we have already seen in (5.1) that t0-cubes in 'l. -24. , c.'1 r. L G'(X'). (5.10)

for allG'°(X,) = G)0 (X,) X Fj(X,). (5.7) IK

Moreover, since Xi (I -- 0)-tests a,. til. it follows from our and

induction hypothesis that there exists a cube, say, c I D?(Lp)
such that all the 0-cubes ofcI are contained in G)0(X,). Also, t0-cubes in Icl°.40, . c U Gj°(X 0 ).
from Lemma 7 we have that there exists a cube, say, c2ED°(Lq) for all
such that all the 0-cubes ofC2 are contained in F0(Xi). Thus
it follows from (5.7) that all the 0-cubes of the cube c = (c Io2) (5.1)
will be contained in Gk°(Xi). However, from the Coverage
Algorithm we know that cED?(L,) since D°(L,.) = D?(Lp) X Clearly, now, ic?', C'. , c' is an SR, say, P0 (4..) of the
D°(Lq). Q.E.D. family tD(L,). D (L,, D (L,.)I. and lei , c , cj is

an SR. say, P°(L,) of the family ID°(Lv), D°(L,).
A. Proof of Property P1 DO(L,)I. Therefore, we have from (5.10) and (5.11) that

Consider an SFDTS, T,. for N and let K be any set of v lines
in N. The exact capability of T, to cover fault vectors of F
can be quantitatively expressed as IIP0 (L.)II < Ilfi GI'(X(')I (5.12)

Gx(T,) = U GK(Xj) "K

XoT, and

where GA (Xi) is G°'(X) or GK0(X,) depending on X,. Clearly,
IGK(T,)I = (KT,). as defined in Section IV. Using Lemmas P )<o10 " .
7 and 8, we now show in this section that certain subsets of P'0(L_) <I L GkO(Xo:|
G(Xi). XiT,. when combined in the specific manner detailed lk

in the Coverage Algorithm lead to a number, O(L,.). which
satisfies Pl. In other words, using (5.12) aid (5.13) in (5.9), weget that

Theorem 3: Given a set K = 1, 2,, vl ofv lines in N and
the minimum coverage O(K) of FA, by every SFDTS for N, the IIPOI(L.)II + IIP 0 (L,.)II < IG (T,)I. (5.14)

'integer O(L,.) obtained by the Coverage Algorithm is such Finally, recalling from the Coverage Algorithm that
that

(L,) _ ogK). 0(L,,) = IIP,.(L,.)II + I IP.(L,,)II,

where L,. is the L-expression associated with K. where tIjjP'.(L,)ll _5 1P 0 (L,)II and IIPa,(L,)II -<

Proof- Let T. be an SFDTS of N such that I IPO(L,)I I and using (5.8) and (5.14), it is clear that

O(K) = O(KT,) = IGx(T,)I. (5.8) O(Lr) < O(K). Q.E.D.

Since there are 2v, single faults on the lines of K, there must
exist at least one input vector in T, corresponding to each of B. Property P2
these 2v faults. To be more specific, let X,'eT . t = 1, 2,..., Given any L-expression L, we will in the following first
v. be an input vector which (0 -" I)-tests the single fault a, = present a procedure which will associate with L,. a specific
1;and let XeT,,t = 1,2, .v bean input vector which (I network, denoted as, N(L,.). A set of lines will next beshown
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to exist in N(L,.) such that the L-expression associated with
Kis L,. Finally, an SFDTS. T,, for N(L,,) will be generated

with the property that o(KT,) = O(K) = O(L,,). For the sake A 13

of brevity, no proofs are provided in this section; the interested
reader can request 1 171 for all the pertinent details.

Let L, be an L-expression consisting of v L's. Then a net-
work of class Cl, denoted as, N(L,) which has no primary
input fan out and consists of 3v primary input variables will
be associated with 4, by the procedure given in the following.
The network N(L) will be constructed by this procedure in

a recursive manner by using two networks, say, N(Lp) and -
N(Lq). where Lp * Lq = L,. The 3v primary input variables
of N(L,) will simply be xI, X2 ', x3,,. Similarly, the 3p (3q)
primary input variables ofN(Lp) (N(Lq)) will bex, x2, ,
x3p, (correspondingly, x1, X2. ". x 3q). However, when a net- 1
work, say, N(Lq) is used as a subnetwork, as in the construc-
tion of N(L,). then the 3q primary input variables of the
subnetwork N(Lq) will be some 3q consecutive xi's, such as,
X3p+ I. X3p+2, " X3p+.3q. (0

The Procedure can now be formally stated as follows. Fig. 3. Networks for the network construction procedure.

Network Construction Procedure: resulting output will be X3J,- if fl= 1, and X,- if # = 0.

Step 1: If v = I, then N(L.) is as shown in Fig. 3(a). a) lfc = . t # i, then let XUj-2 = 1, x 3i- 1 fI and x3i
Stop. = 0;

Step 2: lf v > 2, let v = p + q such that L, = Lp * L.. Fur- b) If c = . t = i. then let x 3N- 2 = 1. x 3i-i = hand X3M
thermore, assume that N(Lr) and N(Lq) are known from = 0;
previous use of this procedure. c) If ci = x, then let X3i-2 = X3-_ = = "

Step3: Let the primary input variables of N(Lp) bext, x 2, Step 3: Foragiven 0, dothefollowingfori = , 2, - ,v. The
• x 3,. and that of N(Lq) be X3p+i, X3p+2. " - , X3p+3q. resulting output will be X31.._2 if 3 = 1, and X1° if = 0.
Step 4: If 4. = Lp + Lq(LpLq). then form N(L.) by ORing a) Same as Step 2a);

(ANDing) N(Lp) and N(Lq) as shown in Fig. 3(b) [see Fig. b) If c =, t = i, then let X3i-2 = 0 x 3i- I . and X3X
3(c)]. Stop. = 0;

In the following we will assume that an input line which is c) Same as Step 2c).
connected to the primary input variable xs. I _< j < 3v, is Stop.
labeled with integcrj. Note now that each N(L.) consists of The test set, T. obtained by the above procedure is an
exactly v subnetworks of the type shown in Fig. 3(a). More- SFDTS forN(L,.). and is such that o(K,T) = O(L,,) 117. The
over, these v subnetworks are logically interconnected in N(L,.) following example illustrates the above developments.

in the same manner as the "L" symbols in 4,. Thus, it implies Example.: Let L, = (L + L)(L + L). The network N(L,.)
that if K is a set oft, lines in N(L) such that there is exactly obtained by using the Network Construction Procedure is
one line in K from each of'these r subnetworks, the L-expres- shown in Fig. 4. Let K =12, 5, 8, I1 be the set of 4 lines of in-
sion associated with the set K would be L,. We will thus be terest. Recall from the Example given in Section IV that for
concerned in the following with the specific set K = 12, 5, L, = (L + L)(L + L). we found that O(L) = 14, and
3v - I ofr lines in N(L.). P (

We now present a test set generation procedure which will ff1 (L,) = (lxlxxlxl)

generate a SFDTS, T,, for N(L.) such that O(K, T,) = O(L,.). and
T, will consist of 4v input vectors, namely, T, = XXRI'. X20' . X20. ) = (O)x xxO0).xom n(o, =. , , , , 0x , ,O

X _1  X,] where each X ° '(X! ° ) is an input vector Completely generating T, with the Test Set Generation Pro-
which (0 - )-tests ((I - 0)-tests) the single line i-s-a-I (line cedure will result in the specification of 4v = 16 input vectors.
i-s-a-0) in N(/,). It will be assumed that the sets P1,,(L,,) and We will, however, illustrate the use of the Test Set Generation
P°=1 (L,,) from which OiL,) was calculated are given. Procedure only for the generation of one input vector. The

Test Set Generation Procedure: complete T, can be generated similarly and is listed in [ 17).
Thus, consider the single fault, say, ag = 0 (that is, the fault

Do Steps I, 2,and 3 fort = 1,2,. -,tv. line 8-s-a-0). Then to determine Xg° we use Step 2 of the pro-
Step 1. Let c'(P8,.(L,,). iO , 1be the cube which repre- cedure fort= 3 and 0 = 0. Doing this, we note that the cube

sents the set Da(L, ) in Pdmn(L,). Moreover, assume that e' = c', t = 3, which represent D°(L.) in P%1 ,(L,.) is (xxOO) =
(c'lc'" • cr ). (c3c'c cD). Therefore, since c,= x, for i = l.we have from Step

Step 2: For a given B, do the following for i = I. 2.. .The 2c) that
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faults covered by any SFDTS on an) set of lines in any internal
2 2 13 fan-out-free network by means of a reference into a prccal-
-3 

3 culated Coverage Table. The generality of our results can be
, seen by noting that various previously known results of this

4_ ,-type simply correspond to specific entries in -the Coverage
11 6 "Table. Moreover, an averaging over all the entries of the

%Coverage Table yields general, quantitative observations, such
7 22 as those stated in Theorems I and 2.

____5_Although the discussions in this paper were limited to irre-
9 9r- 19 dundant networks, the concept of L-expressions is equally
o 10 :applicable to redundant networks. Some preliminary work

k---- 11 along these lines has been reported elsewhere [30]. Further-
t? I? more, there are various other interesting problems to which

Fig. 4. Network for the example in Section V-B. the application of the L-expression concept would be appro-
priate:
1) Since it can clearly be observed from the Coverage Table

X I I, X2 1, and x 3 = i. that there are certain inherently "bad" L-expressions in the
sense that such L-expressions indicate network structures

Similarly, since cf = x for i =2, we have which can have multiple faults that are poorly covered by

X4 = 1, x5 I, and x6 = I. SFDTS's, it would be useful to develop design principles which
minimize the occurrence of such L-expressions in combina-

For i =3, c 0 and i =t," thus, by Step 2(b) we have tional networks.

x7 = 1, x8 I, and x9 = 0. 2) The averaging scheme used in this paper is based on a
heuristic assumption of the "equinumerous occurrence" of

Finally, for i = 4, we get from Step 2(a) that L-expression. It is clear, however, that more network-specific

xt0= I, x,1 
= 0, and X12 = 0. averaging schemes would lead to tighter bounds.

3) The extension of these results to general reconvergent
That is, fanout network of Class C3 would be significant. A possible

X1° = (1, 1, 1, 1, I, I, 1, 1. 0, 1, 0, 0). approach to such an extension might be developed by intro-
ducing the concept of a labeled L-expression, in which all L's

The procedure can similarly be applied to generate the re- with the same label would correspond to a stem line and its
maining 15 input vectors. fan-out branches. Similar to the approach taken in this paper,

It is important to point out here that although the networks this labeled L-expression approach also would have the ad-
constructed in this subsection are fan-out-free networks, it is vantage of utilizing the well developed theory of labeled two-
also possible to construct networks which have primary input terminal series-parallel networks 120] to enumerate and specify
fan out and for which 0(L,.) = tp(K). However, because the various sets of labeled L-expressions;
Network Construction Procedure and the Test Set Generation 4) The generic representation concept would be particularly
Procedure for such networks are much more complex, we have interesting to explore under the constraints of multiple fault
for simplicity considered fan-out-free networks to justify testing problems in highly structured devices such as PLA's
Property P2. and ROM's 129].

In conclusion, it has been shown in this section that given
any set of K of v lines in any internal fan-out-free network N.
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This overview presents several different types of circuit switching
networks: concentrators, connectors, expanders, partitioners,

SIMD interconnectors, and sorters.

.A Sampler of Circuit Switching Networks
Gerald M. Masson George C. Gingher Shinji Nakamura

The Johns Hopkins University Bethlehem Steel Corporation The Johns Hopkins University

Circuit switching networks are systems which As generic examples of their uses in these applica-
provide a set of interconnecting circuits from a set of tions, three schematics of computer systems contain-
inputs to a set of outputs by opening and closing ing circuit switching networks are shown in Figure 1.
switches, or crosspoints. As a discipline, circuit In Figure 1(a), the circuit switching network is re-
switching networks deal fundamentally with the quired to provide paths between a large set of input
design and analysis of crosspoint patterns. At first devices to some smaller set of output ports. These
thought, the idea of designing a system for simply in- output ports then provide access for those input
terconnecting terminals might seem too basic to con- devices to some other devices or functions. It is usual-
stitute a research area. However, the vast majority of ly not cost-efficient or necessary for general opera-
the area of circuit switching networks lies far beneath tion to have one such device or function for each input
the surface. device. Hence, subsets of the input devices are

This paper presents some of the important results selected by the circuit switching network and, in ef-
of recent research into circuit switching networks fect, concentrated to the output side of the network
and their complexity. Several different types of cir- as required by system operation. In some cases, the
cuit switching networks will be discussed, together output functions can all be identical so that the order
with the theoretical complexity and the best known in which the input devices are interconnected to the
explicit constructions needed to implement them. As output ports becomes unimportant. Such an inter-
with any sampler, the network designs we display connection requirement, for example, can be found in
will hardly exhaust the available possibilities. Nor do the area of image processing where the input devices
we mean to imply that those omitted are held in lower are memory cells and the output functions are cor-
regard than those we discuss. Our intent is only to relations, or where the input devices are smart sen-
show that the area of circuit switching networks is sors and the output functions are signal processors.
embroidered with many fascinating designs which In Figure l(b), the circuit switching network is re-
are now, more than ever before, applicable to com- quired to provide paths between specified devices at
puter system architectures. the input side to specified devices or sets of devices at

Much of the early research on circuit switching net- the output side. Some or all of the devices at the input
works was motivated by the needs of the communica- and output sides might actually be identical, but the
tions industry. Indeed, a great deal of the work in this general operation can involve them in such a way that
area still is pursued because of that application, they must be treated as though thekv were dis-
However, with the advent of LSIIVLSI technologies, tinguishable. Hence, the input devices are connected
a circuit switching network now often represents a in a one-to-one manner or expanded in a one-to-many
principal subsystem in a large class of memoryl manner by the network to the output devices as re-
processorlperipheral computer complexes. In fact, in quired by system operation. Such an interconnection
many such systems the associated circuit switching requirement can be found in numerous parallel pro-
network significantly, and even dominantly, affects cessing environments. For example, if the input
the overall cost and performance of the system. devices are processors and the output devices are
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INPUT DEVICES

CONTROL CIRCUIT SWITCHINGU N IT N E T W O R K , ' .. :

(a) OUTPUT FUNCTIONS

INPUT DEVICES INPUT DEVICES

CONTROL CIRCUIT CIRCUIT CONTROL
UNIT SWITCHING SWITCHING UNITSt NETWORK NETWORK

I OUTPUT PORTS
(b) OUTPUT DEVICES (c)

Figure 1. Generic examples of computer systems containing circuit switching networks: (a) concentration, (b) connec-
tionlexpantion, and (c) partitioning.

memory units, then we have what is often referred to puts. As we will see, many well-known circuit switch-
as a data alignment/data access interconnection re- ing network constructions consist of interconnected
quirement. complete crossbar networks.1-4

Finally, in Figure 1(c), the circuit switching net- However, not all crossbar switches of interest are
work must partition the set of input devices into dis- complete. A sparse crossbar switch has some inputs
joint subsets so that the subsets can function as in- and outputs with no crosspoint between them and,
dependent subsystems. Here, many different parti- consequently, between which no direct interconnec-
tioning requirements are possible depending on
whether or not the devices are distinguishable and
whether or not the specific output ports to which they OUTPUTS OUTPUTS
are interconnected is important.

Terminology -,

A circuit switching network can be described as a
set of contact switches, generically called cross-
points, joined together by links in order to intercon- INPUTS INPUTS
nect network input terminals (inputs) to network out-
put terminals (outputs). Circuit switching networks
of interest must be capable of doing this for a very
large number of interconnection requirements. An
example of such a network is explicitly shown in
Figure 2(a) for N-inputs and M-outputs. This network X =CROSSPOINT
isknownasan(NXM)-completecrossbarnetwork, or, (b) (SWITCH)
more simply, as an (NXM-network. Clearly, the
number of crosspoints is NM, since there is one cross- Figure 2. (a) complete (N x M)-crossbar switch; (b) (G)-binomial net-
point between each of the inputs and each of the out- work.
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tion is possible. An example of this type of construc- ping of the inputs onto the outputs. A total assign-
tion is the binomial networks shown in Figure 2(b). ment includes all the inputs/outputs. A detailing of

Besides the illustrations of Figures 2(a) and 2(b), the opened and closed crosspoints at any time in a
which explicitly show inputs, outputs, and cross- network is referred to as the state of the network.
points, another means of describing crossbar net- Then, a nonblocking network in any state satisfying
works is to model them as bipartite graphs. In addi- some valid interconnection assignment can satisfy
tion, the adjacency matrix of a bipartite graph can be any new, valid interconnection assignment contain-
used to represent crossbar networks where the ones ing the previous assignment by being placed in a new
represent crosspoint placements. This is illustrated state containing the old state. It does this by closing
in Figure 3. In Figure 3(a), a (4 X 3)-network is shown crosspoints to provide the additionalinterconnecting
explicitly; Figure 3(b) is a node-edge representation of paths without any disturbance to existing paths.
the network, with the 12 edges representing the 12 As opposed to the above, suppose that the network
crosspoints; and in Figure 3(c) we have the corre- interconnection requirement is to provide disjoint in-
sponding graph adjacency matrix. If it is necessary terconnections from any specified set of inputs to
to indicate the direction of signal flow in the graph, some specified set of the outputs. Suppose further
the edges of the graph representing the network can that, for sorpe assignment where interconnections

be directed from inputs to outputs. Henceforth, we are in progress, an additional request can sometimes
will illustrate our circuit switching networks with only be realized by rearranging some of the existing
whichever representation is most convenient to the interconnecting paths. A network which provides in-
immediate discussion. terconnections in this manner is said to be a rear-

Circuit switching networks are usually classified rangeable network. Hence, placing a rearrangeable
according'to the types of interconnections which they network in a new state to satisfy an interconnection
must provide. In the following sections we will assignment containing the presently satisfied inter-
discuss some aspects of the circuit switching net- connection requirement sometimes requires the
works known as concentrators, connectors, ex- disturbance of existing paths. In such networks, the
panders, partitioners, SIMD interconnectors, and upper bound on the maximum number of rear-
sorters. Definitions of the input to output intercon- rangements necessary to provide for any additional
nection requirements which each of these networks interconnection is usually significant.
satisfy are treated in their respective sections. For Two of the main circuit switching network design
each such type of circuit switching network, techniques are decomposition and staging. The
however, two important aspects relating to their in- former consists of decomposing the initial intercon-
terconnecting capabilities should be pointed out nection requirement into a set of subrequirements,
here. Note that the circuit switching network of each of which is similar in nature to the initial require-
Figure 3 can interconnect all possible combinations ment but usually smaller in size and, therefore, less
of inputs to outputs; and it can provide any new addi- complex to realize. This decomposition is usually con-
tional interconnection between an unused (or "idle") tinued on the subrequirements to produce even finer
input to a not necessarily idle output regardless of the subrequirements. This is then recursively continued
other interconnections which are currently in pro- until it is feasible to satisfy the finest subrequirement
gress. A network with this property is said to be non- with a brute-force or obvious design. Proceeding
blocking. In other words, a nonblocking network can backwards relative to the decomposition technique
satisfy any new, valid interconnection request in the towards the initial interconnection requirement ef-
sense of providing a path for that request without fectively specifies a structure which satisfies the
disturbing any of the other existing interconnections original requirement. The overall structure is then
in the network. This idea can be made somewhat more referred to as a multi-stage structure. Each stage will
formal by noting that a specification of the input-to- often consist of a set of subnetworks linked to the
output interconnection requirements at any time in a subnetworks of other stages. For example, an output
network is often referred to as an interconnection terminal of a subnetworkofonestagemightbelinked
assignment, and it is sometimes described as a map- to an input terminal of a subnetwork of another stage.

OUTPUTS
1(NPUTS

,1 2 3 BA 8 C D

W A INPUTS 2 OUTPUTS

C,-- C I 1 3I. - a

(b), . . W.. ..

Figure 3. Representations of a complete crossbar switch: (a) crossbar, (b) bipartite graph, G, (c) adjacency matrix of G.
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In the following, in illustrations of multi-stage net- greater than M, the number of outputs, are of in-
works showing explicit crosspoint designs, the links terest. We will let the capacity of a concentrator be
will be shown as solid lines connecting the terminals denoted by R. where R is the maximum number of in-
(input and output) of one stage with the terminals of terconnections that can be made simultaneously
other stages. Such links can simply be viewed as through the network. In other words, an Ninput toM
hardwired interconnectors. In the graph models of in- output concentrator of capacity R is a circuit switch-
terconnection networks, the links will either be ing network capable of interconnecting any of the (K)
shown as dotted lines (so as not to confuse them with choices of inputs, K 4 R, to some K of the outputs.
edges which correspond to crosspoints), or, when ap- The important point is that the inputs can be a priori
propriate, the output nodes of one stage will be specified but the outputs to which they will be con-
superimposed on the input nodes of the stage to nected cannot be so specified. Hence, a concentrator
which they would be linked in an explicit construc- can be functionally described by a triplet of integers
tion. When discussing graph models, we will often (N, M, R,). N > M > R, where
refer to the input/output nodes of a model as simply
the inputs/outputs of the network, and the input/out- N = number of inputs,
put nodes of a stage as simply the inputs/outputs of M = number of outputs,

the stage. R = capacity.

Implicit in the concept of a multi-stage design of a Figure 3 is a (4 X3)-network which is functionally a
circuit switching network is a tradeoff which is at the (4,3,3)-nonblocking concentrator. Indeed, it is clear
center of much of the research in the area. Namely, we that an (NXM)-network is an (NMM,)-nonblocking
will be motivated to consider multi-stage designs for concentrator. However, concentrators with fewer
various types of interconrection requirements than NM crosspoints are known. The second stage of
because such designs will often be shown to employ Figure 5 is a (6,4,4)-rearrangeable concentrator in
far fewer crosspoints than straightforward, one- which the pattern of crosspoints connecting the out-
stage alternatives. However, the overall reduction in puts to the inputs consists of all the possible (4}
crosspoints will be paid for by the added complexity choices of two crosspoints between the inputs and the
of realizing assignments in the network in the sense four outputs. This configuration, called a binomial
of computing states to satisfy requests, and in the concentrator, can be shown to have a capacity of 4.1
delays of the network in the sense that a signal flow- Concentrators were first defined by Pinsker,6 who
ing from the network input to the network output will proved that there exist (N,M,M)-rearrangeable con-
be required to pass through more than one cross- centrators for all N > M with at most 29N cross-
point. This size versus control conflict will be seen points. One particularly interesting aspect of Pin-
repeatedly in the following sections. sker's network, as shown in Figure 4, is his recursive

Accordingly, the role of complexity theory in pro- use of a network structure in order to obtain this
viding bounds on the maximum and minimum bound. As discussed earlier, it is common to exploit a
number of crosspoints required in order to realize a structural concept recursively, starting with the
given interconnection requirement is significant in complete problem and using some insightful observa-
the area of circuit switching networks. Lower bounds tion to form subproblems which can be further
provide a theoretical minimum, below which it is decomposed. The key, of course, is to determine the
futile to attempt to construct practical networks; and structural concept which provides some reduction in,
upper bounds provide a convenient benchmark with for this case, the number of crosspoints (or edges in
which to measure proposed designs. In the following, the graph model) relative to a benchmark and,
for each type of circuit switching network, we will perhaps, even agrees asymptotically with the infor-
give the known theoretical and constructional mation theoretical optimum.
bounds. For those bounds, all logarithms will be to Thus, an upper bound on the necessary asymptotic
the base 2 unless otherwise specified. lt is interesting growth of the number of crosspoints in an
to point out here that along these lines we will see (N,,M)-rearrangeable concentrator as the number
cases in the following sections where a decomposition of inputs, N, grows is on the order of N crosspoints,
of a class of assignments can be described, and the ex- that is, O(N) crosspoints. Relative to the information
istence of a subnetwork which satisfies the assign- theoretical bound, this is the best order of growth
ments with a given bound on its number of cross- possible. However, it must be pointed out here that
points can be proven, but where no explicit practical Pinsker's results are non-constructive in that they
construction technique for designing these networks are not generally based on explicit constructions.
is known. Rather, they are based on a proof of only the existence

of an (NMRrearrangeable concentrator for all R <
M. It is significant that there does not exist a method

Concentrators at present (other than an exhaustive consideration of
all possibilities) which leads to their explicit construc-

A concentration circuit switching network or, more tion for all N.
simply, a concentrator interconnects specific idle in- There have, however, been some other recent con-
puts to arbitrary idle outputs by providing disjoint tributions regarding constructions. Margulis," on the
circuits from the inputs to the outputs"7 Clearly, only basis of a complex argument involving the theory of
concentrators where N, the number of inputs, is group representations, has given a construction
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H=(M, (N- M), (N-M)) CONCENTRATOR

Figure 4. Pinsker's concentration network.

technique'whichresultsinaconcentratorofpredeter- Thus it can functionally be described as an
mined capacity with K stages, wherein each stage re- I(y), Y+2)-rearrangeable concentrator.
quires at most 5N crosspoints. However, we are not Another construction of a concentrator is an in.
aware of any results that firmly establish a bound for teresting generalization of the basic binomial net-
K. This unfortunately jeopardizes the applicability of work. Recall that the adjacency matrix of the graph
Margulis' results. representing a network is composed of zeros and

A known constructive result is Masson's binomial ones, where each of the non-zero entries denote the
concentrator6 (see Figure 5), which shows that the position of edges between the vertices of the graph
(2 )-network is a (15,6,4)-rearrangeable concentrator corresponding to the inputs and outputs of the net-
and that the (4)-network is a (6,4,4)-rearrangeable work. Suppose now that instead of each vertex of this
concentrator. Hence the cascade of Figure 5 is a graph representing only a single input or output ter-
(15,4,4)-rearrangeable concentrator with only 42 minal, it represented a set of input or output ter-
crosspoints. This can be favorably compared with a minals, and in the same sense, suppose that each edge
benchmark of a complete bipartite graph with 15 in- in this graph model represented a binomial network
puts and four outputs representing a concentrator providing interconnecting paths between those input
which has 60 crosspoints. A practical aspect of the terminals and output terminals. The capacity of the
use of the binomial construction is that an upper resulting composite network would clearly be a func-
bound of one plus the number of stages can be shown tion of the base network and the particular replace-
to exist for the number of existing paths which must ment networks used for the replacement of each non-
be rearranged to satisfy a new request in its opera- zero in the graph adjacency matrix. For example, if
tion. the graph of a 2)network is used not only as the base

In general, the graph model of an (xy)-binoial graph, but also as the replacement, the result is a
circuit switching network or, more simply, an (36,16,11)-rearrangeable concentrator with only 144
(0)-network, has (x)-inputs, X-outputs, Y-edges/ edges.9 Note that a 36-input, 16-output network with
input, Y(X)/x edges/output, and a capacity of Y+2. 11 crosspoints between each input and the outputs

would require 396 crosspoints.
Such a network corresponds to a super binomial

network. More explicitly, it can be described as a
( ) -network. In general, any (Y 2)2 graph, where Y;l

15 INPUTS 4 OUTPUTS 2, has capacity of R = (Y+1) (Y+2)-1, and thus it

jrangeable concentrator.9 Such concentrators are at-
,tractive because they are sparse, and they are model-

..... - ed as a single, incomplete bipartite graph. The more
_ - general class of (Y networks can be designed in an{ if4 i-P'z1 ' +0as wer ths i asympotiaalytesa thathe

- 0 Regarding nonblocking concentrators, Pippenger7

A has derived the (somewhat surprising) result that the
number of crosspoints of such networks is O(NlogN).6 LINKS As we will see, this is asymptotically the same as that

required for nonblocking connectors, although the
Figure S. Masson's binomial concentrator. former intuitively seems as though it should be much
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Figure 6. Plppenger's N-superconcentrator.

less difficult to implement than the latter. Little is thorough treatise of this type of probabilistic ap-
known about minimal explicit constructions for proach is provided by Erdos and Spencer.12
nonblocking concentrators. Another type of concentrator which is less power-

N-superconcentrators' 0° 1. are a type of rear- ful than an N-superconcentrator is an N-hyper-
rangeable circuit switching network with more concentrator, which is a rearrangeable circuit switch-
powerful interconnecting capabilities than a concen- ing network with N inputs and N outputs in which
trator. In the graph model of an N-superconcentrator any specified set of k<Ninputs can be interconnected
with Ninputs and Noutputs for every set of R < Nin- in some arbitrary order to the first k outputs. Clearly,
puts and every set of R< Noutputs, there exists a set an N-hyperconcentrator has less interconnecting
of R vertex disjoint paths from the set of inputs to the capability than that of an N-superconcentrator.
set of outputs. Thus, in N-superconcentrators the Thompson"3 has shown that a network called an
sets of input and output terminals to be intercon- (N, N)-infrdageneralizer which is due to Ofman 4 can be
nected can both be specified, but the individual input- reversed (in the sense that inputs of the (N,N)-infra-
to-output interconnections within the sets cannot be generalizer are considered as the outputs of the
specified. Clearly, superconcentrators are signifi- N-hyperconcentrator and the outputs of the
cantly more powerful than regular concentrators, yet (NN)-infrageneralizer are considered as the inputs of
Pippenger" has proven the existence of N-super- the N-hyperconcentrator) to produce an N-hyper-
concentrators with at most 40N crosspoints. Again, concentrator. An 8-hyperconcentrator is illustrated
however, no explicit construction which generally in Figure 7. It is easily shown that such N-hyper-
satisfies the bound is known. Pippenger's proof is concentrators have 2NlogN crosspoints.13 This par-
based on the existence of (6m,4m,3m)-rearrangeable ticular construction of an N-hyperconcentrator has
concentrators with only 36m crosspoints. These con- the enhanced capability of interconnecting the
centrators are used in the recursive construction il- selected k<Ninputs to any k<Nconsecutive outputs
lustrated in Figure 6. (allowing for wraparound) while maintaining the

It is worth pointing out here that Pippenger order of the inputs.

establishes his results on superconcentrators with a
probabilistic approach. The principal idea behind
such an approach is to show that the probability that
a network exists is greater than zero, or conversely, Connectors
the probability that it does not exist is less than one.
Proving either conjecture implies that the network In a connection circuit switching network, specific,
exists, although it does not explicitly lead to a con- idle inputs request interconnecting paths to specific,
struction. Besides Pippengers's paper." a more idle outputs. Because of the affinity of such networks
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with telephony, much has been published on this sub- pose the original assignment describing the mapping
ject. Moreover, if Nis the number of inputs to a con- of the N inputs onto the N outputs into n
nector and M is the number of outputs, then when subassignments. Repeating this decomposition on
N=M. a connection assignment of all N inputs onto the subassignments leads to a multistage connector.
all N outputs can be represented by a bijective map- The structure of such a network is explicitly shown in
ping of the inputs onto the outputs; in other words, Figure 8 in a three-stage form. In this form. the struc-
the assignment is a permutation of the inputs. This ture consists of the following:. (1) a first stage (also
observation permits the application of a broad range called an input stage) of r, (n, Xm)networks. where
of mathematical theory to the design of connectors. the n]r =N terminals on the left (input) side of this
Since results for other situations follow from the stage are the inputs to the overall network, (2) a last
results for the case when N = M, we will discuss this stage (also called an output stage) of r2 (i Xn 2)-
case only in the following, networks where the n~r2=N terminals on the right

It is clear that since a complete crossbar network (output) side of this stage are the outputs to the
has one crosspoint between every input and output, overall network; (3) a middle stage of m
such a network will operate as a nonblocking connec- (r, X r2)-networks where the terminals on the input
tor. Hence, if we refer to an Ninput, Noutput, connec- side of this middle stage are linked to the terminals on
tion network of capacity N as an (NNN)-(rear- the output side of the input stage so that each of the
rangeable or nonblocking) connector, an upper bound m (r, X r 2)-networks in this middle stage has exactly
on the number of crosspoints of such a connector is one link toeach of ther, (n, )m)-networksin theinput
N2. This then is a benchmark with which to compare stage, and where the terminals on the output side of
our subsequent reported results. this middle stage are linked to the terminals on the in-

To get an information theoretical lower bound on put side of the output stage so that each of the m
the order of growth of the number of crosspoints, we (r, Xr 2)-networks in this middle stage has exactly one
can use an argument given by Shannon. 16 Since there link to each of the r2 (M X n2)-networks in the output
are effectively N assignments which must be real- stage. It can be shown for this network' that if
ized by an (N,N,N)-connector and since each cross- r=max(n, n2), then the result is an (N,N,N)-
point in such a network effectively has two states, connector. Note that if n =r1 =n 2 =r2 =N12, then the
opened or closed, 2 raised to the power the number of number of crosspoints in the network is 3N 2 - 3N.
crosspoints must be greater than or equal to N1 From Moreover, it can be shown' s that the maximum
Stirling's well-known formula for the approximation number of interconnecting paths through the net-
of a factorial, '6 it follows that the asymptotic growth work which must be rearranged to satisfy a new inter-
of the number of crosspoints is O(NlogN. We will connection request from an idle input to an idle out-
now compare some designs with this information put is, in general, for such three-state structures
theoretical lower bound on the number of cross. (maxr,r2))- 1).
points. Beizer,"9 Joel,20 Waksman, 21 and Opferman and

We will first consider rearrangeable connection Tsao-Wu2 2 give refinements of this approach with a
networks. Benes' classic book' describes a construc- decomposition which employs the repeated use of
tion which is based on Hall's theorem" (sometimes (2 X 2)-networks as the basic element of the network.
called "the marriage theorem"). For a three-stage The results are constructions in which the number of
network, the approach uses Hall's theorem to decom- crosspoints has O(NlogN) growth with N, which by

our above discussion is the best order of growth
possible. For example, in the (NN,A-Waksman con-
nector, shown for the N=8 case in Figure 9, there are
4NlogN-4N+4 crosspoints in general. Benes' has
also shown that if the decomposition utilizes a

1 /(3X3)-network, then the number of crosspoints of
3.8NlogN crosspoints grows. It is worth noting that

2 2 an (NN,]N)-Waksman network has fewer crosspoints
than the (NXN)-network for all N.l6.

3 3 It should be clear that for these networks the
number of stages, and, therefore, the number of cross-

44 points involved in any input-output path, often re-
INPUTS OUTPUTS ferred to as the delay, will be O0logN). For example,

5 5 the (N,N,N)-Waksman connector has a 2logN-I
delay in this sense. This means, of course, that a

5 6 realizing state to satisfy a request can be quite com-
S 7 \ 7 plex. Effectively, the use of a minimal crosspoint

design implies that a tradeoff has been accepted
8 8 resulting in fewer crosspoints at the cost of greater

control complexity and delay. Regarding this latter
point somewhat more specifically, given a request to
be satisfied by one of the above O(NlogN) connection

Figure 7. An 8.hyperconcantrator. networks. Waksman2 ' and Tsao-Wu and Opferman22
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Figure 8. A three-state Interconnection network structure,

give algorithms which require O(MogN) operations. of a straightforward argument, he showed that for
Recently, Lenfant 3 has developed some control three stages of the structure of Figure 8. if m
algorithms which take advantage of an apriori n +n2-1, the network has nonblocking ca. ,bility.
knowledgetofr"frnrequen he equests to alleviate Note that if n1=r=n2=r2---N12 then m--2-l,
this control problem somewhat. However, for some and the number of crosspoints in the resulting net-real-tftne applications, set-up times might still be pro-

hibitive. Indeed, delay and st-up time perhaps repre-
sent the most serious limitation of O(MogN) designsof (NNN)-rearrangeable connectors,. : i.:'

There are applications where not all mappings of
the inputs to the outputs are of interest. Lawrie hasproposed what is referred to as an omega network for . /V "' //,---

interconnections required in the access and align-
ment of data in an array processor. The omega net-
work structure is effectively the left-hand half (in-

placd in h onle schun) o th ain snflctfre

where the linking between the stages is usually in a

perfect-shuffle form. Clearly not all permutations
of the inputs to the outputs can be realized. However,j
Lawrie shows that the data elements of an (nXn)
matrix can be stored using a skewing scheme in 2n in-/
dependent memory units (each data element being
placed in only one such unit) so that, in a conflict-free

als, and square blocks in row-major or colun-major•

order can be accessed and changed by an omega net-
work.

We next consider nonblocking connection net-
works. The first published work regarding the con- . -,, .
struction of such networks is due to Clos.26 By means Figure 9. An (8,S,3)Waksman connector.
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work is 6N 3 12 -3N. It is easily seen that the three- OlNlogN). However, these results are non-con-
stage nonbiocking Clos connector has fewer cross- structive in the sense previously described, because
points than an (NXN)-network for N;?36. Further- their proof of the existence of such (N,N,N)-nonblock-
more, Cantor" shows that with the Clos argument ing connectors is based on a proof of the existence
applied recursively, a structure with O(N(IogN) 2.26 9 ) (but not the construction) of an N input, N output
results. sparse network where each input has crosspoints be-

Bassalygo and Pinsker28 have shown that, in- tween it and 12 of the N outputs and through which
deed, constructions for (NNN)-nonblocking connec- any choice of one-third of the inputs can be connected
tors do exist for which the number of crosspoints is to more than two-thirds of the outputs. Such sparse

networks could be linked together (if their explicit
constructions were known) to yield an (N,N,N-non-
blocking connector with O (NlogN) crosspoints. More
precisely, Pippenger' has recently shown that such
networks exist with 90Mog3Ncrosspoints.

The minimal known construction of an (NNNF
nonblocking connector has been provided by

4.. "" Cantor'27"3° Since this construction is considerably
different from the other connectors discussed so far,
it would be appropriate to sketch it here. Similar to.

the (NNNClos network, Cantor's network has a+i : .... " X /!multiple stage structure which is symmetric around-

the middle stage. Cantor's approach is to use a par
< ticular construction technique and then consider the

number of accessible, idle terminals in the middle
stage of the resulting network relative to any idle in-
put. This number can be easily calculated in a recur-

A-.>sive manner because of the construction technique
used. By symmetry, the number is also known
relative to any idle output. The sum of the two
numbers when compared with the total number of
idle terminals in the middle stage at any time in-

INPUT MIDDLE OUTPUT dicates that there is a common idle terminal in the
STAGE STAGE STAGE middle stage through which the idle input can be con-

nected to the idle output.

Figure 10. (4,4,4)-Cantor network. To see this in more detail, consider the graph model
of a (4.4,4)-Cantor network (shown in Figure 10).
Recall that in such a graph model the dotted lines do
not represent crosspoints but simply associate nodes

S- _ _,- .. - which correspond to terminals which would be linked
together in a construction. Hence, there are four
(1 X2)-networks in both the input stage and the out-
put stage; and there are four (2 X 2-networks in each
of the three intermediate stages. It should be noted

/ also that the association of nodes between stages in
the model corresponds to the so-called perfect-

/ shuffle25 .31 32 in a progressing manner. We will now
_IIJ analyze the input side of the network, and by sym-

metry our observations will also hold for the output

* -side. On the input side, a generalization of network
* modeled by Figure I I would indicate that each of the
* •N inputs of the first stage is in a I xlogN)-network.

This would be followed by log N stages, each sta"

consisting of WN12) logIN(2 X 2? networks, where the lst
of these logN stages (actually the (logN + 1), stage in
the network) is the middle stage. Again, the perfed
shuffle concept is used to progressively associate th
nodes in the stages in the model. To further illustra
the above, Figure 12 shows the input side of s

1ST 2ND LOG N+ I OUTPUT (8,8,8)-Cantor network.
STAGE STAGE STAGE STAGE As seen from Figure 12 any input is connectableU

logN intermediate terminals which are linked to tl
inputs of the logN (2X2)-networks of the seco

Figure 11. Generalized model of a Cantor network. stage. Using these j2X2)-networks in the secoq
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stage, we then see that each of the inputs of the first Pippenger"3 has developed an algorithm for finding
stage is connectable to 2logN output terminals of the an interconnecting path through a Cantor network
second stage. For a given input, we will call the nodes which requires O(logN) operations.
representing these output terminals of the (in this To determine the number of crosapoints in an
case) second stage the accesble nodes of that input. (NN,N)-Cantor network, we note first that the input

The crucial point here is that because of the construc- stage has N (1 XlogN)-networks. This results in
tion of the network, the number of accessible nodes of MogN crosspoints. Next, we note that the next
an input increases by a factor of two each time we logN- I stages (that is, all the intermediate stages
move a stage closer to the middle stage. Hence, when between-and excluding-the input stage and the
the middle stage is reached, the number of accessible middle stage) each have 2NlogN crosspoints. The
nodes to any input is NlogN. same numbers hold for the output side of the middle

But it is clear that connections that have been stage of the network. Summing the number of cross-
previously made and are thereby existing in the net- points on each side of the middle stage and then ad-
work at a given time will limit the actual accessibility ding 2NlogN crosspoints for the middle stage yields
of any input to terminals of the middle stage. Hence,
we see that our concern must be with idle, accessible 2(NlogN + (logN- 1) (2 NlogN) + NlogN) -
nodes. Let us then consider the worst case along 4 N(logN)2 crosspoints.
these lines for stage , i=1 -... logN +. We will
denote the number of idle, accessible nodes of stage i If N is a power of 2, then an (N,N,N)-Cantor network
to any input as Ali). By the construction indicated in has less crosspoints than an (N,N,N)-Clos network for
Figure 11, all NAt29. A still further reduction can be made to pro-

duce Cantor networks with O(NlogN-1)2 ) cross-
All) = logN. points and two fewer stages of delay. Recently, Pip-

penger" has slightly improved this bound on the
Now, the number of accessible nodes on the output number of crosspoints in a Cantor construction to
side of the second stage is twice that of the output 16N(logSN) 2.
side of the first stage, but note that one of these out-
put nodes can be busy because of other connections
being realized in the network. Thus,

A(2 = 2 All) - 1.

Similarly,

AM3 = 2 A12) - 2. / ." "
-- ' , ' - - - "

In general,

A(i+I) 2Ai) - V - .  sec,, *C

Since the initial value is A(l) = logN, the following fe., , , , ,-
closed form solutions for AUI) can be obtained for i>-2 < CN ),~ N

Ai = 2i-I logN - Y-1) W-2.

Hence, for any idle input, the number of idle, accessi- X
ble output nodes of the middle stage is < ,o X

AllogN + 1-- 2IogNogN) - logN (210N-1).

o sogN. lat,0g^ "--..

In the worstcase, of the total MogNterinals on the -,N d < ,' - " \.
output side of the middle stage, at least NlogN- , ,(N-1) are idle. Of these idle terminals, at least AX----o \. . ,' ,.'0 \\

(1/2)NlogN can be accessed by any idle input. Clearly, t--o c$,-- . .", "
in less than worsc-c se conditions, more of the idle . X-n--&
terminals can be accessed. By symmetry a similar , -.

argument can be made for any idle output of the net-
work relative to the terminals on the input side of the x>--- - -
middle stage. Clearly, this implies that any idle input
and any idle output can be interconnected regardless
of whatever other interconnections also exist, which
is, of course, the desired nonblocking property. Figure 12. Input side oan (6,6,8)-Cantor network.
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Partitioners the other issues with which we have become involved
;n our consideration of circuit switching networks.

A partitioner is a circuit switching network which two further issues must be considered for parti-
performs the function of partitioning a set of devices tioners: we must establish whether or not the devices
usually attached to the inputs of the network intodis to be partitioned are identical; we must establish
joint subsets so that the devices within each subset whether or not the. outputs of the partitioner are to be
can communicate with each other over private buses, specified.
Clearly, the most straightforward construction of a If the system consists of identical devices, the in-
partitioner is an (NX(N/2))-network where the de- itial formation of subsets is greatly simplified
vices to be partitioned are attached to the N inputs, because our concern is only with interconnecting
Notice that if the outputs of the network are indis- unspecified groups of specified sizes. If the devices
tinguishable in their use, the N/2 horizontal lines of are distinguishable, for example, the devices might
such a network can be viewed as simply N/2 indis- be a collection of processors and memories, or if the
tinguishable buses to be shared by the subsets of devices are physically identical but are used in the
devices. Then the function of the (NX(N/2))-network processing of concurrent, asynchronous tasks so that
would simply be to interconnect each of the specified their states make them functionally distinguishable.
subsets of input devices to a distinct bus line, where then the partitioning is clearly more demanding.
the specification of the input subsets could either be Similarly, as suggested above, the outputs must
according to size (if the input devices are indis- sometimes be specified in a partitioning request. For
tinguishable) or according to an exact listing of the in. example, each such output can be a port to some
put devices (if the input devices are distinguishable). specific device or function, or it could be a signal or
Notice also that if the outputs were attached to data source required by one of the subsets of devices
distinguishable output devices so that subsets of in- in the partition. Such cases are clearly more corn-
put devices had to be connected to particular buses in plicated to realize than those in which the outputs are
the system operation, the (NX(N2) )-network could indistinguishable.
also realize this type of partitioning demand. On the basis of the above, we will refer in the follow-

Such a complete crossbar circuit switch realization ing to (N distinguishable inputs, M distinguishable
of a partitioner, however, requires O(N2) crosspoints. outputs)-partitioners as (NDMDJ-partitioners; (N
Hence, in spite of the simplicity of control, for most distinguishable inputs, M indistinguishable
systems which demand partitioning capabilities, outputs)-partitioners as INDJl)-partitioners; IN in-
alternative designs which require fewer crosspoints distinguishable inputs, M distinguishable
must be considered. Along these lines, in addition to outputs)-partitioners as (NIMD-partitioners; and

IN indistinguishable inputs, M indistinguishable out-
puts)-partitioners as (NI,MI)-partitioners. Further-
more, if all partitions cannot be realized by a parti-
tioner, we will indicate this by referring to the parti-

D1 DN tioner as incomplete. Partitioning can also be per-
formed in a nonblocking or in a rearrangeable man-
ner. Nonblockingpartitioning involves the capability
of establishing the requested interconnection of a

__U subset of devices without disturbing the existing
W subset interconnections presently implemented by

the network. Rearrangeability implies that such
disturbances occur. Indeed, not only must paths be

0 Y rearranged, but at times the devices composing cur-
rently interconnected subsets must also be rear-
ranged. Such classification of networks will not be

(b) stressed in the following. However, in some of the
suggested approaches to the realization of partition-

Figure 13. Partitioning networks with Indistinguishable ing demands, the use of, for example, connectors will
inputs and outputs. be suggested; it will be apparent, however, that even

if, say, nonblocking connectors were used in those
situations, nonblocking partitioning will not always

Table 1. result.
Partitions of live Identical elements. The simplest partitioning requirement clearly in-

Partitions of Devices Number of Subsystems volves indistinguishable inputs and indistinguish-
((D), (0). (0). (D). (D)) 5 able outputs. In fact, for such a requirement and N
((0.0). (0). (0), (0)) 4 devices, a straightforward serial structure with N- I
((0.0). (0.0). (D)) 3 crosspoints as shown explictly in Figure 13(a) is suffi-
I (0D..). (0). (0)) 3 cient. Note that we take advantage of the fact that((D.DD). (,D)) 2 the outputs are indistinguishable to design a network
((D.D.D.D). (0)) 2 with effectively no outputs. Still simpler structures

D,D.D.D) I are possible. For example, if N=5, all seven possible
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partitions are listed in Table 1. Then with one cross- O(logN) operations, Finally, given an existing state of
point and the hardwired, fixed links as shown in a banyan network, if a new request for a subset inter-
Figure 13(b), all such partitions can be realized under connection is made by a subset of the idle input
the assumption that each of the devices can be placed devices, and if the resulting partition consisting of
in a subset of size 1 by the action of avoiding or ignor- the current realized subset interconnections plus the
ing communication with other devices to which it new subset interconnection request is realizable by
might be hardwired by means of a fixed link. the network (recall that the banyan network is an in-

The case of (NIMD)-partitioning adds a certain complete partitioner), then the banyan can provide
degree of complexity to the requirements to be satis- the new subset interconnection request without
fied. First of all, given Ninput devices and M=N out- disturbing the existing subset interconnections.
puts, it can be seen that the total number of partitions Recently, Thompson' 3 has suggested the use of his
which can be requested is expanders as (ND,Ni)-partitioners with full parti-

tioning capability. An expander is similar to a con-
2N- I) 1 2N)! nector except that it has the added interconnection2J n

N - 2 (- )2 capability of allowing inputs to be interconnected to
any number of outputs, while still requiring that each

With Stirling's formula,' 8 it can then be shown that output be interconnected to at most one input.

2N-I) t L(N,)1!2 (22). Hence, just as an (N,N,N)-connector can realize allN!.

(N 2

So, theoretically, O(AN crosspoints are required for
the realization of an (NIMD)-partitioner. N DISTINGUISHABLE OUTPUTS

However, other than a complete crossbar network, 6.o

the only construction which the authors are aware of
requires O(NlogN) crosspoints. As illustrated in
Figure 14, this consists of an (N,N,N)-connector,
which we have seen can be realized with O(NlogN)
crosspoints, augmented by a series of N-I cross-
points serially linking the inputs. The operation of (N.N.N)-CONNECTOR

this network in providing a set of, say, k input devices
to some specified output is to simply interconnect a
set of k consecutive input devices, and then provide a
path through the (N,N,N connector from any one of
the inputs associated with this set to the specified
output. if the (N,N,N)-connector is a Waksmah net-
work, 21 the resulting (NI,MD)-partitioner has D D
4NogN-3N+3 crosspoints. A similar scheme is N IDENTICAL DEVICES WITH N-1
possible with Benes' 3.8NlogN crosspoint network. SWITCHES BETWEEN THEM

The case of (ND, MI)-partitioners has received con-
siderable attention in the literature. Goke and Lipov- Figure 14. (NI,ND) partitioner.
skis4 have described a construction for such parti-
tioners, which they have referred to as banyan net-
works. Figure 15 shows an example of the graph
model of an (8D,8W)-banyan partitioner. In general,
the graph model of a banyan network is a Hasse
diagram of partial order in which there is an unique
path from any base to the apex, where a base (apex) is
a node with no edges incident into (out from) it.

In this figure, the bottom nodes, which represent
inputs that are assumed to be attached to the devices
to be partitioned, are the bases and the top nodes are
the apexes. Because of the generality of its definition,
many types of networks are included in the class of
banyan networks. But those banyan networks which
are of practical interest do not usually have full'parti-
tioning capabilities, so that Goke and Lipovski con-
sidered parallel and multiplexed usage of banyan net-
works to obtain a full partitioning capability. Some of
the motivations for considering banyans are that
such networks have 0JNlogN) crosspoints and only
0(logN) delay. In addition, configuring the banyan
network to satisfy a device subset interconnection re-
quest is straightforward and can be accomplished in Figure 15. (8D,SI)-bsnyan partitioner.
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permutation mappings of the inputs onto the inputs, titioner. Such an (ND,Nl)-partitioner is illustrated in
then an N, N,N-expander can realize all NN general Figure 16. Such complete partitioners require
mappings of the inputs to the outputs. Thompson's 4MogN-3N+3 crosspoints, but they do not provide
design is to simply attach the devices to be patti- the nonblocking property. Again, a similar scheme is
tioned to the outputs of one of his expanders. Since possible with Benes' 3.8NlogN croaspoint network.
the inputs of his expander (the outputs of the parti- It is also possible to construct a partitioner from an
tioner) are now indistinguishable, as far as the patti- O(NlogN) crosspoint (NNN)-connector with feed-
tioner's operation is concerned, a part of the input back.34 A clear disadvantage of this design of a patti-
side of the expander can be deleted, resulting in an tioner is that the paths which serve as buses for
(ND, (N/2)I)-partitioner with 6NlogN crosspoints. subset interconnection iterate around and through
Slight improvements to this partitioning scheme are the network, introducing significant delays. How-
possible by using the NN,N)-Waksman connection ever, with an (NN,N)-Cantor network, nonblocking
as part of Thompson's expander or by using an partitioning can be achieved.
(N,N,N-Benes connector' where Nis a power of 3 and Finally, it should be clear that (NDAMD)-par-
three-way branching is used throughout. titioners can be realized with (MNN)-expanders.

It is also possible to use the (N,N,Nl-connector where the devices to be partitioned are attached to
Sugumented by N- 1 serial crosepoints on the output the outputs of the expander.

side 'or full partitioning capability. This is simply the
reverse of the network proposed for the (NI.NDl-par-

SIMD interconnectors, expanders, sorters...

. .... . -l SWITC -There are still large, open areas in our circuit
.switchg sampler; but tof fl them in would go far

beyond our page limitations. Accordingly, we will
conclude by mentioning just a few of the many other
possible designs.

For data exchanges between processing elements
in classes of computer systems having structures
referred to as single-instruction multiple-data-stream

(N,N.N)-CONNECTOR architectures, a number of interesting interconnec-
tion patterns have been developed. Figure 17 shows a
schematic view of an SIMD-computer. The intercon-
nection network shown is not necessarily a separate
functional unit in an actual SIMD computer, but the
implementation of interconnection patterns is a fun-

I . I" damental aspect of SIMD-computer operation. Ac-
cordingly, these interconnection patterns can be

Sdescribed in terms of single-stage interconnection
' Snetworks containing from O(N) to O(NlogN) cross-
* ST IcNGIStABI1 DEVICE ." ,-S points. These networks will be referred to as SIMD-

interconnectors.
Figure 16. Complete (ND, Ni)partltloner with 4NIogN The N inputs and the N outputs of the SIMD-
-3N + 1 crosspoints. interconnectors can be considered to be attached to

the N processing elements so that, say, processing
. element i can transmit data to the processing

elements ih', ,ik if input i has crosspoints between
CONTROL UNIT it and outputsj l.... ik. Since no input of the SIMD-

interconnector will have crosspoints between it and
all the outputs, to perform a data exchange between
specified pairs of processing elements, a control unit
must place the SIMD-interconnector in a sequence of
states so that the desired data exchange is ac-

Pcomplished by a series of data exchanges through in-
PE5., termediate processing elements. Clearly, for SIMD-

interconnectors, complexity of the control algorithm
and the time delay required for data exchanges are of
major significance.

INTERCONNECTION The general states which the SIMD-interconnector
NETWORK / can assume are usually described by functions which

map the inputs onto the outputs. However, whether
.............. . .. or not a specific data exchange indicated by a func-

Figure 17. Schematic view of an SIMD computer. tion actually occurs in system operation depends
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upon whether the processing elements involved are in
active or inactive states. This is determined by a 0
masking scheme. As for the details of these masking a Z

a. 0schemes, suffice it to say that from our perspective, . u )

an inactive processing element implies that the cross- 0 0
points between it and the outputs in the SIMD- 0 o
interconnector which are involved in the realization Z U Z z
of some function are considered to beopen (that is, no 5. 5. R
data is transmitted), whereas those crosspoints 0o

relative to an active processing element are con-
sidered to be closed (that is. data is transmitted). _
Hence, the complete data exchange indicated by a 0
function does not occur.

There are five principal SIMD-interconnectorsZ
which have been discussed in the literature. These u.M 5 E

fieaealclosely related; in fact, Siegel"~ has shown 0Eis4-
that they are all effectively equivalent in the sense E

taeahcan siuaeteinterconnecting capa-2 aSst0
blteofthe others. Since SIMD-interconnectors re 0 r~ C~_

aediscussed in a companion paper in this issue of 0
Computer, we will only reference, for completenesis. X * r

these five principal networks here: the shuffle- Z 1 eel
exchange network,25' 313- which has 2Ncrosspoints; -9 8 4,7 Z

thecubenetwork,37 which has Mog/.crosspoints; the __ 0 u '
Illiac network 363"' which has 4N crosspoints; the C ,i E o c
plus-minus 2* network 64. which has O(NlogN) &BIOC 0 C"~E
crosspoints; and the wraparound plus-minus 24 net- .2 V X ~ -

work, which has O(NlogN) crosspoints. M C 0 £ E 2

Expanders falso referred tosas generalized connec- C 0' M O 0
tion networks) have already been mentioned as cir- A SU.....
cuit switching networks which realize (assmn 0" %.*ce -cZaX
there are Ninputs and Noutputs) all NN mappings of e a -, a as '

the inputs onto the outputs. In other words, one-to- 0) V 1 4 -
many assignments are permnitted and the expanders 16~ E i V. =*' es -2
have a fanout capability. Such networks are more 0 n as a& 8 2 t!
powerful than connectors which realize all N7 one-to- ~.
one mappings. Indeed, it would be possible here to .0 L
present for expanders a section analogous to that on _,E 9 80
connectors; unfortunately, only the following very Z8 face 0.
brief sketch is possible. Ofnian" originally showed 3.- 0 :- 0
the existence of a IloNlogATcrosspoint expander with o*1202
51ogN delay; Pippenger improved this result by CC CL
showing the existence of a 7.6NlogN crossppoint ex- ZU
pander with an O(NlogN) delay; Thompson'thn .*

showed the existence of the same size network with in=
only 3.8logN delay. Recently. Pippenger,", utilizing
his existence results for concentrators and super-
concentrators, placed a lower bound of 1 .9NlogN
crosspoints and an upper bound of 3.8NlogN cross-
points on expanders with O((logN 2) delays. Regar-
ding constructions, Masson and Jordan" have
.shown explicit designs for 0(N 513) crosapoint net- -

works with only three delays. Repeated decomposi- uE
tions using this design result in rearrangeable ex- a C. 0
panders with OIN 3"21ogN) crosspoints and nonblock- lt 22t~ E C

ing expanders with O(N-4)2(logN)O56nOg3)crosspoints. 5M~

Further work along these lines has been done by ;i1
MassoDs," Hwang.' 7 and Asthana. 48 Pippenger 3  .805
gives a non-uniform rearrangsable expander using L) Dg Z
feedback. It is simply constructed from twoZ
(NN,NV)-connectors, one used specifically for feed-
back. Hence, an interconnecting path involving one U

input and many (perhaps all) outputs canitre
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through the network up to O(NlogN) times. Clearly, unavoidable. Some type of interconnector chip could
the paths through such a network are non-uniform, eventually be as common in such system designs as
but by the work of Tsao-Wu and Opferman, 22 a state processor chips, memory chips, and 1/0 chips are to-
realizing a total assignment can be determined with day. Before such a point is reached, however, many
O(NlogN) operations. Finally, Masson5 has also questions need to be addressed, for, clearly, the ap-
shown some expander constructions by using stages plicability of a circuit switching network to a system
of the binomial concentrators. Pippenger" uses a design is related to the details of the application. For
similar idea to show that O(N(logN)v+l) crosspoint example, what are the generic circuit switching net-
expanders can be constructed if OIN|logN)u) cross- work requirements for, say, various types of fault-
point concentrators are used. Since a connector cer- tolerant computing designs as opposed to that re-
tainly operates as a concentrator, we can therefore quired for, say, various types of vector processing ar-
use this technique to construct an O(N(logN)3 ) cross- rays? Some preliminary investigations along these
point expander by using Cantor's O(N(logN) 2) cross- lines have been reported 6345; clearly, however, there
point connectors. Similarly, this approach shows is a long way to go. Moreover, the treatment of such
that if a state satisfying a new request can be deter- questions seems to demand an intriguing blend of
mined with O((logN)w) operations for the concen- computer science and computer engineering re-
trators, then the resulting expander requires search; for example, complexity theory and digital
O((logN)' 11) operations to do the same. systems structures are intimately related to such

Sorting is such a basic operation and so similar in considerations. It is an exciting challenge, and one
nature to connecting, that as might be expected, sort- that cannot be ignored. It is only necessary to scan
ing networks, or sorters, represent an area unto the modern literature describing telecommunication,
themselves. The primary difference between a sorter computer/peripheral, or instrumentation complexes
and a connector is that the former is made up of corn- to see this, for inevitably in a schematic or illustration
parater cells, which for our purposes can be con- there will be that operationally significant box label-
sidered to be analogous to (2 X2)-networks. Hence the ed "circuit switching network." N
control of sorters can be thought of as being dis-
tributed to each such cell. Also like nonblocking con-
nectors, there is no reason not to expect O(NlogN)
crosspoint designs; but, again, the minimal known References
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CAPACITY CALCULATION OF COMPOSITE CONCENTRATORS
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Baltimore, Maryland 21218

ABSTRACT

In this paper, a capacity calculation technique is described for a

class of interconnection networks called composite concentrators. This

technique is then used to develop some capacity observations for various

concentrators of this class.

INTRODUCTION

A concentrator is a type of interconnection network having switching

elements, called crosspoints, between disjoint sets of inputs and outputs

to the network such that specified sets of inputs of some maximum size can

be interconnected to arbitrary sets of outputs of the same size [1]. More

specifically, a concentrator with N inputs and M outputs, N > M , is

said to have a capacity c < M if, for any choice of K < c inputs, a set
of K disjoint paths from The inputs can be established by closing cross-

points to some K outputs. It is important to note that the inputs can be

specified, but the outputs to which they are connected cannot be specified.

Clearly, if crosspoints were placed between every input and output, the
capacity would be equal to the number of outputs. (Indeed, for such a net-

work, the outputs could also be specified.) However, in general, the num-

ber of crosspoints would be prohibitively high; hence, sparser constructions
are of interest. The "roblem with which we deal in this paper is the capac-

ity calculation of a class of one-stage sparse crosspoint networks called

composite concentrators.

Preliminaries

Figure 1 shows three examples of one-stage (or bipartite) sparse cross-

point networks. Such networks can be expressed formally as a triplet

(1,O,R), where I is the set of inputs, 0 is the set of outputs, and R

is a relation detailing the crosspoint placement between the inputs and the

outputs. R can be given in the form of a graph, or as a crosspoint model

(as is done in Figure 1), or as a set of ordered pairs where (i,j)R if

there is a crosspoint between input i and output j . Regarding the

latter, we can express the network of Figure l(a) as

((1,2,3,4,5), (a,b,c}, {(1,a), (1,c), (2,b), (3,c),(14,b), (4,c), (5,a), (5,b)}))

Similarly, the networks of Figures l(b) and l(c) can respectively be

expressed as

(11,2, 3,4,5,61 ,{a,b,c,dl ,{ (1,a) , (l,b) , (2,a) , (2,c) , (3,a) , (3,d) , (4,b) ,(4,c),

(5,b) ,(5,d) ,(6,c) ,(6,d) ))
and

((l,2,3),{a,b,c),{(l,a),(l,b),(2,a),(2,c),(3,b),(3,c)1) •

It should be noted that the networks of Figures l(a) and l(b) satisfy

the implicit requirement for concentrators that the number of inputs is

greater than the number of outputs and (since the capacity must be greater

than or equal to one and all outputs must be of some use in providing

interconnecting paths from the inputs through the network) that each input

(output) can potentially be connected to at least one output (input). More

formally, we can express one-stage concentrators as triplets (1,0,u) where

1016
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I ,loj - and where u ju-
1
) is a relation mapping elements of 1(0) to

subsets Of (1 corresponding to ile crosspoint placement such that

u(i W (u (o)f*) for all it] forO)

1 2 3 4 5 1 2 3

b b

c C

A C C -
(A) (C)

•] 2 3 4 5 6

-b

Figure 1

It should also be pointed out for later reference that Fiqure 1(b) is
a basic binomial concentrator which we will describe as a (

4
)-concentrator

since the crosspoint pattern connecting the outputs to the inputs consists
of all possible (1) choices of 2 crosspoints between the inputs and the
4 outputs. In general, an (x) -concentrator has (x)-inputs, x-outputs, y. (X)

crosspoints. It should also be noted that the nework of Figure Ic) is

(2)-network, but it is not a concentrator.
The concentrator of Figure I(a) has a capacity of 2 and the ()4

concentrator of Figure l(b) has a capacity of 4 . However, the capacity
of a sparse crosspoint networks which satisfies the implicit requirements
for a concentrator is, in general, very difficult to determine. Clearly,
one way to determine the capacity is to exhaustively consider subsets of

inputs (starting with subsets of size two and progressing upwards) until a
subset is found for which there is not a one-to-one mapping of the inputs to
some subset of the outputs. However, even for networks of modest size this
is prohibitive. Hence, in this paper we will develop a much more efficient
capacity calculation technique with which to address this problem for a

class of concentrators called composite concentrators.

Isolation Concepts

To develop our capacity calculation scheme it is necessary that we
first define the following concepts.

For a concentrator expressed as (I,O,u), if u(i)c'cO for some
icl , then we will say that i is completely enclosed by 0' , or 0'
isolates i . For a given subset O'cO , the set a(0') is:

o0) filiel and u(i)co')

0(0') is called the isolated set of 0' , since elements of o0(') cannot
access any output except those which are the elements of O'

For all subsets O' of 0 for which )0'1-k , we define an isolation
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number Hk to be:

"k max loC°)l
io'j=k and OcO

Finally, the isolation vector, (hlh 2 ',...ho) , is determined by taking
the differences of the isolation numbers as 'follows:

hj=H-H1 where 1)101 and H0=0.

k l1

obviously ) hj=H , and h
•j=l j=1 Jo

Example 1: Consider the concentrator of Figure l(a). By inspecting the
relation u it is seen that {a,b} isolates {2,5] , because u(2)={bc{a,b).
and u(5)=(a,b~c{a,b) .

Since lu(2)=lju(3)l=l but u(2)u(3) and Iu(j) I for jc{l,4,5) , it
follows that HI=1 . Similarly H2=3 , and H3=5= II . Hence the isolation
vector of this concentrator is (hl,h2,h3)=(1,2,2)

Capacity Calculation

We can now give the following:

Theorem 1: The capacity of a concentrator is the minimum value of c

which satisfies c
Hc = hi>c

where (hi,h2 ... ,h10 1) is the isolation vector of the concentrator.

Proof: If c is the minimum value which satisfies Hc>c , then any H.
for lj<c is less than or equal to j , that is , Hf.j for 1<j<c . I

Therefore any subset V of I , where IIvI=j<c , hai crosspoints to a
subset 0'=i u(i)<_ and 10'I j . Thus from Hall'sTheorem (seeAppendix),

any subset PcI of size up to and including c-i has some subset OcO
where there is a one-to-one correspondence between P and 0' . Now from

the requirement on the concentrator that for any icl , u(i)#$ , it follows
that for the given subset 0' , every element iI0') is connected at
least one element in 0 which is not in 0' ; that is,

for all i0C(0') , u(i)n(O-0')30 .

Therefore for any subset I'cI up to and including size c, there is some
subset of O'c0 which has one-to-one correspondence with P . Hence the
capacity is c . Q.E.D.

Example 2: The isolation vector of the concentrator of Figure H(a) is
(1,2,2).

H =hl=l<] while H 2=hl+h 2=1+2=3>2

Therefore the capacity of the concentrator is 2 .

By making use of Theorem 1 it is clearly straightforward to calculate the
capacity of a concentrator when the isolation vector or the values of the
isolation numbers Hj,lj<ii0 , are known. But, in general, this informa-
tion is not easy to obtain. However, for some special cases, such as bi-

nomial concentrators, we can give the following.

Lemma 1: The isolation vector of a (')-concentrator is
-- -' y

0 12x- x-l1
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Proof: AD (x)-concentrator has (X) input lines, while an (Xyl)_
concentrator 1which is contained in an (x)-concentrator) has one less outpit
line than the (')-concentrator and only Ix-l) input lines. Therefore at
ost (Xl} input lines are isolated by x-1 output lines. That is HXI(y) . ow from the formula (g)=(al).(j) , we have that

x x-1 x -1

By using this equation recursively the isolation vector is obtained in

descending order. Q.E.D.

With Lemma 1, we can prove the following.

Theorem 2 (Hasson 12]): The capacity of (x)-concentrator is y+2

Proof: Since in a concentrator, the number of inputs is always larger than
the number of outputs, it follows that xy+2

From Lez~a 1 B ( y+ ) 4 1y+2 y

and H =( y2 )- Y (y+2)
y.2 y y

Note that N =y+l<y+2<y+ (y+2)=HY+l y Y+2

Hence, the capacity is y+2 Q.E.D.

Composite Concentrators

Given two one-stage sparse crosspoint networks, say, A:(1 1 ,01 ,ul)
and B: (12,0 2,u2 ) , we define the composite one-stage sparse crosspoint as
A-B: (llx12 ,0lx02,u12) or more simply (I12,012,u12) where 112 is the
Cartesian product of 21 and Z2 and 012 is the Cartesian product of
01 and 02 , and where u12: lxI2*01x0 2 such that

u1 2 (iIi 2 )={u 1 (i I)xu 2 (i 2 )i

where iCI1 and i2 CI2 and u (i )xu2 (i2) is the Cartesian product of
ui(i1 ) and u2 (i2 ) . The networks A and B will be referred to as the
component networks of the composite network A.B .

Example 3: Let A denote the network of Figure l(a) and let B denote

the network of Figure l(c).

A: (11,2,3,4,5), {a,b,c), u

B: ((1,2,3), {a,b,c), u2)

1 2 3 4 5 1 2 3

a a

Ul:9 b " b

Then the composite network AB has 15 inputs and 9 outputs and a compos-

ite relation u12

A-B: (((1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),
(4,3),(5,1),(5,2), (5,3)),{(a,a),(a,b), (a,c), (b,a), (b,b),(b,c),(c.a)
(c,b),(c,c)),u12
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11 12 13 21 22 23 31 32 33 41 42 43 5152 53

aa
ab

i i ac

u12: ba- t - bc

- P ---- _ R- i c

ca

cc

Note that A-B is a composite concentrator. Hence if we knew the iso-
lation vector of thiscomposite concentrator, by Theorem 1 we could deter-
mine the capacity. However even though the isolation vectors of the com-
ponents are known, the isolation vector of the components is not apparent.
Hence, we will now define the concept of an isolation array with which to
address this problem.

In general, suppose that two networks P and Q have following isolation
vectors: (Pl,P2,.--,Pn) and (ql,q2 . -,qn) . Then the isolation array for
the composite network P.Q is an mxn array whose ith row, jth column ele-
ment is equal to piqj . In other words, it is the following vector product
of isolation vectors:

(PI - (qilq 2 ... ,. qn)

-plq1 plq2 .P2 P P ..... p 1 li[2 q
p~ 1 0q2 . ***P

" '= P'qj' Poq2 .- ..... ' Pmqn
.. 2  .  Pmn

Example 4: The isolation array of the composite network A-B of Example 3
is

1 (0,1,2)0 
2_

For later reference, we will denote the ith row, i column element of
the isolation array for the composite network P-Q as hij . Then if P
has m outputs and Q has n outputs, the isolation array is

h11 h12 h13*' In

h21h22 h23 *h 2n

h hh ... h
mln2 m3 mn
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Capacity of Composite Concentrators

we will present in this section a theorem which is the basis of a ca-
pacity calculation technique for a class of composite concentrators. How-
ever, before doing this, we must first develop the concept of a smooth net-
work.

We will define a network, say, P: (I,O,u) to be smooth if, given the
network's isolation numbers H1 ,H2,... ,H101 , there exists a sequence of
101 subsets of 0 , denoted as 01.o2 .... 0JO; , where

010 2c 3c...c0
101

and I 0(0) I = H..

Example 5: The concentrator of Figure I(a) (for which H =1,H2=3, and H-5)
is smooth as can be seen by examining 01={b], 02={b,cJ ,land 

2
0 3=a,b, c

since a({b))={2), C({b,cJ}={2,3,4),o({ab,c)) = {l,2,3,4,5) .

Finally, we will define an m(n)=partition of an integer c to be a
partition of c into m integer parts, rl,r 2 ,...,rm, such that
rl+r2+...+rm=c, 0Orjfn, and ri rj for i<j . We can now state the followong:

Theorem 3: Given the isolation array of the composite network P-Q where
the isolation vector of P is (pl,..°,pm) and the isolation vector of Q
is (ql,....qn) and at least one of these two component networks is smooth,
then the capacity of P-Q is given by the minimum value of c which satisfies

max rl r2 rm

over all m(n)-partitions ( hl + h2  1''' [ h )>c
of c j=l j j=l ] 3=1 3

The proof of Theorem 3 will be omitted in this version of this paper
because of its length [3].

It should be noted that the complexity of calculating the capacity of
a P-Q composite concentrator by repeatedly using Theorem 3 for increasing
values of c can be shown to be 0(N3/2) [5].

Example 6: For the composite concentrator A.B of Example 3, the 3(3)-
partition which satisfies Theorem 3 is: 3,3,0 . Hence, for the composite
concentrator A-B, we have that c=6 . It should also be noted that using
Theorem 3 repeatedly by starting with c=l and progranming to c=6 results
in a consideration of 15 partitions.

Capacity Observations

Using Theorem 3, a wide variety of interesting capacity observations
can be made. For example, a P-Q composite concentrator where P is a
(')-concentrator and Q is a (")-concentrator is called a (u) ()-
concentrator. Formulas for the capacity in terms of the parameters u,v,x,
and y for all cases of interest are listed in Table 1 and shown graphically
in Figures 2(a)-2(d).

Higher dimensional composite concentrators can also be considered. For
example, we can determine the capacity of a (4) (4) ()-concentrator, or more
simply, a (1)

3
-concentrator using a 3-dimensional isolation matrix. Simi-

larly (4)n-concentrators can be considered. Table 2 gives the capacity of
2x)n concentrators for 1in<B , x>4

Finally, Figure 3 shows a 3 dimensional isolation array for (u) (w)()-
concentrators. Some rather interesting capacity observations for this 3
dimensional composite concentrator are the following: for u)4, w=4, and
y=5, c=-79; for u>2, w-5, and y=5, c=74; for u>2, u>6, and y-5, c-58; and
for u>2, w>4, and y!6, c=48.
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() -Concentrator 2-v-y and (:)( )>ux
v y v y

Case 1. y=2
Case 1.1. ukv and x4y c=(v+1)(y+2)-i
Case 1.2. u-v or x=y

Case 1.2.1. U-V c=v(y+4)

Case 1.2.2. x=y c= (v+4)y

Case 2. y*2
Case 2.1. v=y
Case 2.1.1. u

4
v+2 c= (v+l)(y+2)-1

Case 2.1.2. u>v+2 c=v(y+3)

Case 2.2. Vfy where u is U-1
Case 2.2.1. x.y C=uy iu a
Case 2.2.2. 

x=y+ 1

Case 2.2.2.1. 2y>v(v+l) c=(v+2)(y+l)

Case 2.2.2.2. 2y-v(v+l) c-=(v+2)(y+1)-1

Case 2.2.3. x=y+2
Case 2.2.3.1. 2v>y c=(v+l) (y+

2
)-l

Case 2.2.3.2. 2v.-y c=v(y+2)

Case 2.2.4. x-y+3

Case 2.2.4.1. 2v>y c=v(y+3)

Case 2.2.4.2. 2v'-y c=v(y+2)

Table I

(u)( Concentrator 2-v-y and (u) (x) >ux
v y v y

Case 1. y=2

Case 1.2.2. x=y

(v+4)y

6) 12 11
2 11Case 1.1. ukv and A3,

(5 1 (vl) (y+ 2 )-1 (a)
2
4
2

2

2 12 12 12 - - - Case 1.2.1. v(y+4)
2

22 2 2 2~ 2

Figure 2
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Case 2. y*2

case 2.1. v-y

V+4

v3 Case 2.1.2.

v v(Y+3)
v+2 Case 2.1.1 Wb
v (v+1) (y+2)

Vl

V

(V (v+1)(v+I2)v+3)(v+4) . x)
V V V V V V

Case 2. yj02  (continued)
Case 2.2. v~y

Case 2.2.1. xr-y
u-1

uy where (v- )>vy

(U r Case 2.2.2.1. x--y+l and 2y)v(v+1)
Vj (v+2) (y+l)

Case 2.2.2.2. x'=y+l and 2y
4
v(v41)

(v+2) (y+l)-1 (c)

v4 Case 2.2.3.1. x--y+2 and 2v>y
(v+ lv+1) (y+2)-1

(V+3

V case 2.2.4.1 xay+3 and 2v~y

V+1 ~y3

(Y) (Y+) (y+2) (y+
3 ) (y+

4  
. x)

y y y y y

U

Case 2.2.3.2. x=y+2 and 2vt-y
and

Case 2.2.4.2. x4-y+3 and 2v~y (d)
v+ v~y+2)

(V+ 1
v

V

y y y y y y

Figure 2 lcontinued)
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I

n 1 2 3 4 5 16 7

capacity 4 11 32 96 286 826 2588 7762

T ble 2
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APPENDIX

Hall's Theorem 14):

Any set of inputs I' , I'cI , has a one-to-one corresponsence with
some output set 0'c0 if and only if for any subset I"cI' we have that
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HIGHER ORDER COMPOSITE CONCENTRATORS

by

Shinji Nakamura and Gerald M. Masson
Department of Electrical Engineering

The Johns Hopkins University

Baltimore, Maryland 21218

Abstract Hence, this network has a capacity of 4.

A concentrator is a type of interconnection Sparse crosspoint placement in a one-stage net-
network which can provide disjoint paths by means work to provide a maximum capacity is the main topic
of closing switches (usually called crosspoints) of this paper. More particularly, we will consider
from any specified set of inputs to the network an extension of the binomial design method for con-
(where this input set has cardinality less than or centrators. The binomial (

0
)-concentrator and its

equal to some number called the capacity) to some associated capacity were first discussed in [I] and
arbitrary set of outputs of the same size. In (2]. An extension of this design, the composite
this paper, we consider the calculation of the binomial concentrator, was discussed in [2] and 13).
capacity of a class of concentrators called com- In this paper, a further extension of this design,
posite concentrators. Composite concentrators are called a higher order binomial composite concentra-
one-stage interconnection networks with sparse tor, is considered.
crosspoint patterns between the inputs and outputs
where this total crosspoint pattern is determined Preliminaries

from the crosspoint patterns of smaller, component A one-stage concentrator can be defined as a
concentrators which haVe the so-called binomial triplet (I,0,r), where I is the input set, 0 is
crosspoint pattern. the output set, and r is the crosspoint placement

relation between I and 0. For the example of
Figure 1, I ={1,2,3,4,5,61 , 0- (a,bc,d} , and
r - { (l,a) , (l,b) , (2,a) , (2,c) , (3,a), (3,d) , (4,b)

(4,c) , (5,b) , (5,d) , (6,c) , (6,d)} . r can be
Introduction expressed by a graph as well As by a crosspoint

A concentrator is a type of interconnection diagram as shown in Figure 1. When only a conveni-
network which can provide disjoint paths from any ent summary of the properties of a concentrator need
specified set of inputs to the network (where this be expressed, another triplet of numbers (1I1,101,c)
input set has cardinality less than or equal to where ;II is the number of inputs, (O is the
some number called the capacity) ts some arbitrary number of outputs, and c is the capacity of the
set of outputs of the same size. -le crucial concentrator can be used. Recall that the network
limitation of this type of interconnection network has capacity c if any k inputs, k -c , can be
is that the output set to which the specified in- connected to some k outputs using k of the
puts can be connected cannot be arbitrarily speci- crosspoints. For the concentrator of Figure 1,
fied. Indeed, the assignment of a given input to this triplet is (6,4,4) .
a particular output is often not possible. For A binomial (u)-concentrator is a one-stage
example Figure 1 shows a design of one-stage, sin concentrator having ( ) inputs, u outputs, and
input, four output concentrator. In this design where each of the (u) inputs has r crosspoints
an x" represents a crosspoint between input and to a unique choice of v of the u outputs.

A composite concentrator C1 x C2  (IxI 2
1 2 3 4 5 6 OlxO 2 ,rl 2 ) of two component networks C -

I i _ (II'Olrl) and C2 " (12,02'r2) is a on4-stage
a concentrator where Ilx1 2 and Oix 02 are

Cartesian products, and r1 2  is the crosspoint
. placement relation between II 2 and 01X02 which

__ cis defined asi c

Sr 12 (i1i2) -(r (i ) x r2 (i2 )

FIGURE for i£ Il and i2 ,1 . Figure 2 shows a
(j)(j)-composite concentrator which was composed
from a (j)-concentrator and a (3)-concentrator.
Higher order concentrators, C 1 xC 2 x... xCn , are

output lines indicating that there can be a con- defined in a similar manner.
nection between the lines. Note that the input Isolation Arrays
set (1,2} can be connected to any one of the out-
put sets {a,b) , fa,c) , or {b,c) . But it is For an input i £ I of a single concentrator
clear that there is no means of connecting (1,2) (I,0,r) , ri) is the set of outputs to which i
to, say, {a,di . Hence, there is limited access to has crosspoints and is therefore capable of being
the outputs from the inputs. Nevertheless, it will connected. Hence, without all the outputs of r(i),
be shown later that this concentrator, called a the input i is isolated from the outputs. Looking
binomial (4)-concentrator (since the network's at this from the output side, for any subset 0' of
column crosspoint oattern displays exactly onre the outputs 0 , the i-sue is what set of inputs are
every possible combination of placing two cross- isolated by 0' * We will express such a subset of
points on the four rows), can connect any four (or inputs as 0(0') . Hence G(0') is
fewer) inputs to some output set of the same size. O(W) -{ilicl and r(i)c0O'
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Nowfralsbeso outputsse of size k , Wihioainnmes 0 1p-),(-)

wdefine isolation or k as: 1 c h''i i

H mhax,.., 0  whesread simplyhj to:e sltinvctro

h 2' c 12],1" T,he c concentra

Tnhae ihe- foato br .co an is temxumszeo For bioil(4-2cnrate slto

) -l -I 0 ? .i.lI ±

h Is can be xtededtw ectond o e b

any highut ser ordsze k . With isolation fcompoite onea(U) cn r as -fo
cndefine ta isolation bvec as: V1 Vti pi- v 1

s axl 2 " h o (O Thiseread slyh ... to: ) i h ioain etro

nsTheorem 3 2) 11- The capacity oftaoinoialr.t(a)

whrehj _j~ or1~j.11an 0iszro or ioa +v)cnenrtr 2h .s aio

mensional isolation array of two isolation vectors, concentrator is the minimum value of c which sat-
S, and S2 is obtained from ordinary vector isfies
uiplication. more generally, the elements of a c

wth order isolation array of m vectors h > c
S x S2 x x., are defined by products such as:o

where the summation is over c of the hil'

wne'eh.=% h._ for ..h.j~ andh ,0  wheeo tre if h+

concen.rators i ehine j2 .hei ...ray m where if elj is in the summation, then all

where hfth P.is , o < i and t < i , are also in the sumation.
i is the i element of the Si. iso For the special class of a second order bi-

lation vector. nomial (v+2)(v4
2
)concentrator or, more simply, a

v )o isoeaai the isolation array is the two
Capacity Calculation dimensional array shown in Figure 3. Now, the sum-

The capacity of a concentrator can be cacu- mation of hs up to and including t
lated by means of its isolation vector. satisfying the ordering required by Theorem 3 yields

Ta sum which is equal to the number of elements
the The capacity of a concentrator s u aded. That is,
the minimum value of c which satisfies



Theorem 5: The capacity c of a n
t
h order (u)n_ I v+h 2 +h +. +h < v +iv

i

concentrator is bounded as follows: 2 3 -

(v+) c -v-(v~l) (v+2) for uv+2 and n--3 Noting vat

(v+l)n<c<v-(v+l)n-2(v+3) for u>v+3 and n >2 l + h +h h (V+i)

Proof: Part 1: (v+l)
n 
<C and that

For the two dimensional isolation array case,
the maximum sum of (v+l)

2 
elements satisfying the(V) - (v+l)(v+2).. (v+i) <i + i-i

ordering required by Theorem 4 can be shown to be
We can conclude that there are not m< (v+l)n ele-

V+l v+l 2 ments of the isolation array that will sum to more

h. (v+l) than m . Hence (v+1)n < c~i~l j~l
th Part 2:

This generalizes to the n
th 

order isolation P < n-3 2
array case where it can be shown that the maximum C _V. (v+l) (v+2) for uv+2 and n> 3 (a)

sum of (v+l)n elements is and 2•c<v-(v+l)
n -

(v+3) for u>V+3 and n >2 ,(b)

v+l v+l v+l These two inequalities can be proven by show-

h. " (v+l)n ing that there always exists a set of m elements
1n

1 
32)Jn l n which sums to more than m when m is equal tov.(v+l)n-3(v+2)

2 
or v. (v+l)n-2(v+3) respectively.

Now, this part of the proof will be completed if Considering (b) of Part 2 first, we have previously
it can be shown that there is no way of choosing shown that in the two-dimensional case that there
m < (v+l)n elements which sum to more than m . exists v.(v+3) elements satisfying the subscript
To show this, it will first be convenient to sim- ordering requirement that sum to more than v.(v+3).
plify the notation. We will therefore write the Now, to go to higher dimensional isolation arrays,
isolation vector consider the first v+l elements of the isolation

0 (v-2) V-i V (v+l), v+2) vector
v-1 v-1 v-i v-l), v-1 v-i (0 0(v+n-2) ,v+n-1)

v-I ',' v-i .... V+l

more simply as These first v4l elements clearly sum to v+l so
as we expand to higher dimensional arrays (h >3)

(0.0lv'h 2 'h3 ... 'hn-l' hn') it is clear that we can choose for each additional

dimention (v+l) times the number of elements of
Using this, the two dimensional isolation array can the previous dimension which sum to (v+l) times
be given as shown in Figure 5. the previous sum. In other words, for the nth order

case, if we select v.(v+l)n-2 (v+3) elements,

_v+2) h jlJ2... jn  ,where l <(lv , l <_j2<(v+3) , and

0,. 0, 0, 0, 0, 
0
,. , . l.k!(V+l) , 3<k<n , it follows that they will sum

to more than v-.(v+l)n- 2
(v+3)

v , 0 0 , ,... Considering next (a) of Part 2, it is easily

0 0 1, v , h2' h3 ' ' h '
... seen that for the three dimensional case, the ele-

Sments h.l .J. , l<)<< , 1 jl<<(v+2) , k-2,3 , sum

0 . 0, v , v
2
, vh2" vh3, ...'vhn'., . to more than v(v+2)

2 
. Then, similar to the argu-

0ent for (b), expanding to higher dimensions will
0 , h2 vh2 ,  hi, h2h 3' ''h2hne- maintain this unequality since the number of ele-
* . . :ments and the sum increase by a factor of (v+l)

.for each new dimension. In other words, for the nth
,.. , 0 , hn, vhn, h2hn' h3hn ' hn''_ order case, if we select v - (v+l)n-3(v+2)2 ele-

ments, h2...n where l< .__v , 1< k<(v+2)

Figure k-2,3 , and l)<v+l , 4<i<n , it follows that

they will sum to more than V.(v+l)n-3(v 2)2
Clearly (and as indicated in Figure 5), the minimum
number of elements that must be summed to include Q.E.D.

h2  in the summation is Beyond the capacity bounds of Theorem 5 for
(v22) - v

2
2 2v -(+)2 (U)-concentrators, an essentially similar argument

to that of Theorem 4 yields the exact capacity for

Moreover, this is the only possible selection of sufficiently large n . This result is stated with-
less than (v+l)

2  
elements that sums up to more out proof as

than (v+l) . Hence, so as not to exceed v-(v+2) Theorem 6: The capacity of ()nconcentator for
h2 must be such that sufficiently large n is

lv~h 2 + < v(v+2) v 2+2v • v(v+l)n-3(v 2)
2 - 

(n2) 4 for uv2

Similarly, for higher order cases, or V(V+l)n-2(v+3) - v(+5) for u >v+3
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0 20
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2 ~vl 0 ... 0 2 2 4
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Figure 4

vil V+l Since it is easily seen that any (u)
2
-concen-

S h.. - l+v+v+v
2 

= (v+l) 2 trator with u >v +3 has an isolation array in

i=l j.1 which the isolation array of (v+
3
)
2
-concentrator is

embedded, it can be concluded that the capacity of

and this is the maximum value of any summation of any (u)
2
-concentrator with v >3 and u >v +3 is

(v+l)
2 

terms in the allowable adding order. The v(v+3 .

next nonzero element, hv, (v+2) , is v elementsv, (v+2)Extensions to Higher Orders
away with a separation of v-l zeros. But

Theorem 3 can be extended to the nth order bi-

h v (v+l) nomial concentrator case as follows.v, (v+2) 2
Theorem 4: The capacity of an nth order binomial

Thus, (ul)(u2) ... (un)-concentrator is the minimum value
Vl V2 vn

v+l v+l 2 2 of c which satisfies
I I h.. = (v+l) c (v+i) +v- (v+l) (v+2)-1

i.1 j.l 1 c<(v+1)2 +v [l hjl2.j > c,
+ 2 il 2.. n

Therefore from Theorem 3, the capacity of the (v+2)1 where the summation is over c of the h
concentrator is (v+l) (v+2)-l. Similarly, the 31w2"h'in

isolation array for the (v+
3
)
2
-concentrator is where if hk2k k is in the summation, then

shown in Figure 4. The maximum summation of 1 2 n

v.(v+3) elements of the isolation array satisfy- all h . s , l'i<n k. > L are also in

ing ttle required ordering is 1 2 n
the summation.

v v+3 vv+l v(v+l) (v2) In general the number of summations of h's

i- j-1 2 > v(v+3) . which satisfy the conditions of Theorem 4 is pro-
portional to an exponential function of C . There-

While for v > 3 fore, exhaustively examining all of them to find

I v v+3 the minimal is impractical. Fortunately, for bi-
v(v+3) > - v(v+l) +1 hij -hv, (v+3)" nomial (u)n-concentrators, capacity formulas for

il il sufficiently large n can be obtained.

Therefore from Theorem 3, for v> 3 , the capacity
of (v+

3
)
2
-concentrator is v(v+3)

_- -- a- i
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ON THE DESIGN OF CONCENTRATOR NETWORKS

Gerald M. Masson and Shinji Nakamura
Department of Electrical Engineering

The Johns Hopkins University
Baltimore, Maryland 21218

ABSTRACT

An (N,M,C)-concentrator is an interconnection The actual connections of inputs to outputs
network with N inputs, M outputs (McN) where in a concentrator are accomplished by means of a
for any specified subset of C<M inputs, each of switch mechanism referred to as a crosspoint. The
the inputs can simultaneously be connected by means detailed implementation of an actual crosspoint is,
of a disjoint path to some output. In this paper of course, application dependent. In the following
we consider concentrator design from the point of a crosspoint can simply be considered to be a
view of i) lower bounds on the number of switch- switching element when "closed" provides a connect-
ing elements called crosspoints needed to imple- ing path between the line entering it and the line
ment a one-stage concentrator, and (ii) the place- leaving it, as opposed to when it is 'open" and no
Bent of these crosspoints on a crossbar grid to such connecting path exists between these two lines.
produce sparse crossbar networks which function as
concentrators. More particularly, we show minimal A concentrator is called a one-stage concen-
crosspoint designs for the special full capacity trator if it is realized in the form of a so-calledcases where M-C . With a new lower crosspoint crossbar network where between any input and any
casestha whe drv fo C geWithanewalowerM. casn t w output there is at most one crosspoint. In the
bound that we derive for general N, N, and C, we foli
show that the so-called binomial network is a mini- foilowing it should be understood that we will be
mal concentrator design, and we consider the concerned only with one-stage concentrators. Ob-
near-minimality of composite binomial designs. viously, a complete crossbar network in which there
Finally, we use our derived lower bound to show is a crosspont between each of the N inputs andFinallyeue orsderuied lor bound to inut M outputs can operate as a (N,M,M)-concentrator.that Pippenger's construction for a N input- However, since NM crosspoints is usually a prohibi-
N output superconcentrator, which recursively uses tively high number, we will consider sparse cross-
least 17.0625N crosspointsm bar networks in which there is at least one input

and output between which there is no crosspoint.

INTRODUCTION Clearly, the number of crosspoints and their place-
ment are the crucial issues relative to the capa-

An (N,MC)-concentrator network is an inter- bilities of sparse crossbar networks. Accordingly,
our concern in the following will be with the totalco<Nectio etwork wath Npecifd iut d C< os number of crosspoints and specifications of the out-

(N) where for any specified subset of CM putsto which each input has crospoints or, equiva
inputs, each of the inputs can simultaneously be
connected by means of a disjoint path to some out- lently, specifications of the inputs to which each
put. C is referred to as the capacity of the output has crosspoints on a crossbar grid such that
concentrator [11-[61. The crucial limitation of the resulting network functions as a (N,M,C)-
the connecting capability of this type of intercon- concentrator. Such specifications will be referred
nection network is that given a specified set of to as a design of that concentrator.
inputs, in order to simultaneously connect each Preliminaries
input in this set of an output, the outputs cannot
in general be arbitrarily specified (as would be In order to consider sparse crossbar networks
the case in a permutation network), as concentrator designs, we will need the following

notation and definitions. Any one-stage crossbar
Concentrators are becoming increasingly impor- network can be described as a triplet (I,O,R),

tant in distributed computing systems requiring the where I is the input set , III -N, 0 is the out-
establishment of disjoint communication paths be- put set. Io1 - M ,and R is a relation between I
tween a subset of a large set of not necessarily and 0 where for i £ I and 0 t 0 , 0 £ R(M) implies
identical devices and a smaller set of identical there exists a crosspoint between input i and out-
devices. For example, suppose that each input was put a . This will at times be expressed in the
connected to a terminal device and each output was following by the statement that input i is incident
connected to a computing device. At any one time, to output o , or, equivalently, that output o is
up to C users could each, be at some subset of the incident to input i . R can graphically be
N terminal devices, each requesting a connection expressed as a crosspoint diagram such as that shown
to a computing device. Clearly, since all the com- in Figure 1. In this figure, (which will later be
puting devices are identical, it would not matter identified as a (F-network) 1- (1,2,3,4#5,6) ,
which computing device was connected to each termi- 0- (a,b,c,d) ,and R(l) f (a,b) , R(2) - {a,c) , R(3) -
nal device. Concentrators satisfy this type of {a,d) , R(4) - fb,c} , R(5) - (b,d} , R(6) - (c,d) . An
interconnection requirement. 'K" on the grid between input i and output o

implies that occ (i)



these designs are non-Isomorphic in the sense t-hat

Inputs one cannot be transformed into the otner by row/

1 2 3 4 5 6 column permutations.

a .I

. outputs r 4 -

Fig. 1. A (4 )-network. (b)

2 Fig. 2. Two designs of a (6,4,4)-concentrator.

In addition to the two designs of Figure 2,

A particular network design wil -erred for certain values of N and K , other non-

to often in the following. If I- N) ; isomorphic designs of full capacity concentrators

N can be given. We have already stated that the
and U1R(U) is the set of all possa es of binomial (I)-network of Figure I was a design of a

of s2ze v of the elements of 0-{ I and (6,4,4) concentrator 131. Note that this design

R(i) 0 R(J) for all i 'j , then the ing has the minimal number of 12 crosspoints. More

sparse crossbar network is called a h t- generally, for all v> 2 , (v+
2 )-networks are de-

work or, in this case, a (M)-network. is signs of ((v+2) , v+2,v2)-concentrators (3). It is

a )network. It can be shown [3] t. h)- clear that these designs have the minimal number of

network is a design of a (6,4,4)-concei crosspoints since

A subnetwork of the network describ, ((v+2)-(v+2 )+l).(V+2)-V.(v+2)

(I,O,R} is simply a network described bI In some cases a subnetwork of a (v+
3
)-network

[I ,O ,R )  w here 1 1 € I , 0 1 s_ o ,I
RI 0 can be determined which is a design of a minimal

full capacity concentrator. It can be shown that

The isolation set , a(O') ,of a subset O' cO a (v+
3
)-network is a design of a ((

v +
3) , v 3, v 2)-

of a network described by (I,O,R) is the subset concentrator 3]. For certain choices of v , by

I' cl consisting of inputs incident to outputs deleting inputs from such a network, minimal de-

only in 0' . That is, signs for full capacity concentrators with v+3

o(O) - (ilicI and R(i) c '.. outputs can result. For example, Figure 3(a) shows
a (I)-network which is a design of a (20,6,5)-

Full Capacity Concentrators concentrator. Now, by deleting the inputs 1,2,6.9,
10,13,14,16,17, and 18 (where the input numbering

An (N,M,C)-concentrator where C-M is called is from left to right), the network of Figure 3(b)

a full capacity concentrator. The following is a - -

necessary condition on designs of full capacity _1111111I II I I I L I I I I
concentrators. 7 7 7 1 1

Theorem 1: The minimal number of crosspoints I

required in the design of an (N,M,M)-concentrator 4 r " T

is (N-m *l)M. 
(a (b)

Proof: Assume that some output, say, oc'0 of a 6

design of an (N,M,M)-concentrator was incident to Fig. 3 (a). A (T-network which is a design for

N-M inputs. This means there are N-(N-m)-M a (20,6,5)-concentrator;

inputs with no crosspoints to a . But, clearly (b). a design for a (10,6,6)-concentrator.

this contradicts the assumption that this design results. It can be shown that this resulting net-

functions as a (N,M,.lJ-concentrator, since these
M inputs only have crosspoints, and, therefore, work is a design of a (10,6,6)-network. Moreover,
canputsconlyce h a cosot and, outpther e it can be shown that there are at least 144 ways to
Hence, in a (N,M,M)-concentrator design, each out- delete 10 inputs of the (6)-network to produce non-

put mst be incident to at least N-i +c inputs- isomorphic minimal designs of a (10,6,61-concentrator.

This results in a total of at least (N - M + l)M Finally, the number'of non-isomorphic minimal

crosspoints in any design. Q.E.D. designs of a full capacity (N,M,M)-concentrator for
any N and M is an open question. Clearly, we

Designs of (N,N,M)-concentrators having exactly could always find at least two. We will see in the

this minimal required number of crosspoints can be following sections that for the more general (NM,C)-

given. Clearly, in such designs, the placement of concentrators, M > C, this is not necessarily tle case.

these (N - M + 1)M crosspointa must be such that for

any choice of M of the N inputs, all subsets A Lower Bound for (NMC)-Concentrators

of size N' < N of these chosen M inputs must In the previous section, we showed minimal de-
collectively be incident to a total of at least M' signs of (N,M,C)-concentrators for the special case
outputs. Figures 2(a) and 2(b) give two designs where M-C. In this section we will give a new
of a (6,4,4)-concentrator satisfying this condition lower bound on the number of crosspoints required
and having the minimal number of 12 crosspoints. in any (NHM,C)-concentrator, MC . It will be seen

These two designs can obviously be generalized for that in some cases designs satisfying this lower
any (N,M,M)-concentrators. It should be noted that bound can be given.



Consider any design of a (N,M,C)-concentrator. C C-1 C-x+l• (5)
Assume that this design contains Nx crosspoints, H 1 Hix+
where x is the average number of croespoints for
input. That is, on the average, each input is in- Since ther re inputs itollo s tt e
cident to x outputs. In the sparse crossbar average number of inputs isolated by an output set
network corresponding to this design, it should be
clear that, since the network by assumption has C C-1 C-x+l N (6)
capacity C, any choice of C of the M outputs, ( H-- " -° Nl
say, 0' defines a subnetwork relative to the in-
puts in the isolation set, a(O') , which functions ()
as a full capacity concentrator. Let (01,02,..., Hence,0 Io)1
OH8) be the ( ) possible choices of output sets i-N C C-i
or size C. Consider o(Oi), i-i .... (M), and let H H-I "-+)

Si be the sum of the number of outputs incident
to each of the inputs in (Oi ) . Since the inputs Consider next the right-hand-side of (3).
of o(Oi) are by definition isolated by 0 i , we The term M
can write that (C)

s, ±sJ)l i-i
ica(°O) H

It should be clear that Si is the total number is the average number of crosspoints in the design
of crosspoints between the inputs of 0( 0 i) and between a set of inputs isolated by C outputs and
the outputs of Oi . As the original network was a those outputs. Using (6) and, again, that there are
design for an (N,M,C)-concentrator, it follows that on the average x crosspoints per input in the
each of these subnetworks must each be a design for design, it follows that
a (Ic(Oi)iC,C)-concentrator il, ....(M). So, by
Theorem 1, for all i=l ... () , A )

(I0(Oi)I-C+l).C C 5. . (1) Si
i<i C C-I C-x+l

( . (_-.- ... .4- . Nx
Summing over all (M) choices of output sets of size H H 1 HK+)

C , and dividing by (M) yields

() Using (7) and (9) in (2), rearranging, and
C combining terms allows us to state the following:

i- I ili Theorem 2: A lower bound on the number of cross-

M < M) points in any design of a (N,M,C)-concentrator is
(C) (C Nx where x satisfies

It should be noted here that (2) is a necessary C C-i C-x+l 2
condition for (1). That is, if (2) is not satis- (W ... - ) N (C-x)+C-C2-O (10)
fied, then there must be at least one Oi such that
(1) does not hold and, therefore, the original net- Observe by Theorem 2 that, as should be
work could not provide a capacity of C. Now, (2) expected for the full capacity concentration case
can be rewritten as where C-M, (10) is satisfied by

A (N-M+1) .M(cH) (HM) (x .l ~
CC N4

I Io(Oi) I Si  which agrees with Theorem 1.
M - C+lC < " Observe next that for the general binomial
(C)() design of a (u)-network for a (u,~+)

Consider now the following term from the left- concentrator where N- (u) ,M-u, and C-v+2, (10)
hand-side of (3): is satisfied by x-v . Hence, we have the new

result that binomial networks are minimal designs.
( ) This is stated formally as
SI0(Oi)I Corollary 1: (u)-networks are minimal designs of

i-i ((u) , u, v+2)-concentrators.
H (4)

We can also use Theorem 2 as a benchmark to

Clearly, this term is the average number of inputs compare candidate designs of (N,M,C)-concentrators.

isolated by an output set of size C in this Designs with Nx' crosspoints where x' is "close"

(H,M,C)-concentrator design. An equivalent expres- to the value of x which satisfies (10) are at

sion to (3) can be obtained as follows. Recall times acceptable for those cases when no design

that each input is incident on the average to x with Nx crosspoints is known. For example, con-

outputs in the design. Hence, the probability that sider the composite binomial network of Figure 4.

an input is isolated by C of the M outputs is This design is obtained by taking a (I)-network as
shown in Figure 1 and replacing every crosspoint



Taking logarithms yields

T I IIIIIlog X log N-log C (14)
-T T IIlg I I I l M lg C

kl I TT I I T I I T I I I JL II]L

Equation (14) represents a lower bound on the

aL average 'number of croaspoints in any (Nk,Mk,Ck)-

concentrator design for large k.

Returning then to the issue of Pippenger's
superconcentrator construction which was based on

the recursive use of (6k,4k,3k)-concentrators with

6 crosspoints per input, it is seen from (14) that

Fig. 4. A (1)2 -network. a lower bound on the number of crosspoints per in-

put for such linear concentrators is x-2.40942.

with another (I)-network together with the proper When (6k,4k,3k)-concentrators with (2.40942)-(6k)

input and output expansion. The resulting net- crosspoints are used in Pippenger's superconcen-

work, in this case, is called a (1) 2 -network; and trator construction, it can be seen that a lower

it can be shown that it is a designofa (36,1,i/)- bound on the number of crosspoints in the result-

concentrator [4). The (4)2-network has Nx'- ing superconcentrator is 17.4565N.

(36.(4)-144 crosspoints. From (10), we find that

x-2.548; therefore Nx-91.733. It is of interest to consider alternative lin-
ear concentrators because Pippenger's superconcen-

Linear Concentrators and Superconcentrators. trator construction only requires the use of con-

A (Nk,mk,Ck)-concentrator for given N,M, and C centrators where the capacity is equal to one-half

is called a linear concentrator since the number the number of inputs, but the ratio between the
of inputs, outputs, and the capacity grow linearly number of inputs and outputs has some flexibility.

with k . Linear concentrators have been used as Let 8 correspond to this ratio in the sense that

network components to prove the existence of cer- we will consider ( n . t, n n )-concentrators. Now,

tamn superconcentrator designs (51,161. A super- from (14),

concentrator is an interconnection network of sore- log n - log 2  _ o__ 2__15_

what more powerful connecting capability than that x 2 log 2 (15)

of a concentrator in the sense that in a super- log Bn - logny log 2 + log B
concentrator there are N inputs and N outputs and
for any specified subsets of K<N inputs and out- then the number of crosspoints in Pippinger's con-

puts, there exists a disjoint path to connect each 
struction can be expressed as

input to some output in the respective subsets. n.(2 log 2 1 , (16)
Hence, unlike a concentrator, for a superconcentra- log 2+ log 0 - 2(6

tor both the input and output subsets to be con- 1
nected can be specified and they can be of any 

size 2

less than or equal to N . However, within these Numerical analysis shows that (16) is mini-

subsets the particular one-to-one connections cannot mized when B -0.70251. From (15), this results in

be specified. Pippenger (6) proved the existence x-2.03835. Then, if (i,0.70251n, 1 
i-concentrators

of superconcentrators with at most 40N crosspoints, with 2.03835n crosspoints were usedwith Pippenger's

This proof was based upon a recursive construction construction, the result would be a lower bound of

using (6k,4k,3k)-concentrators which Pippenger proved 17.0652N crosspoints. No design of a superconcen-

existed with at most 36k crosspoints. In this trator using Pippenger's construction could have
section, we will establish a lower bound on the less crosspoints.

number of crosspoints in superconcentrator designs References
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LOWER BOUNDS ON CROSSPOINTS IN CONCENTRATORS AND SUPERCONCENTRATORS

Shinji Nakamura and Gerald M. Masson
Department of Electrical Engineering

The Johns Hopkins University
Baltimore, Maryland 21218

Abstract

Lower bounds on the required number of exists between these two lines.
crosspoints in realizations of interconnection
networks called concentrators and superconcen- A specification of the crosspoint place-

trators are given. This work is in contrast to ment between the inputs and outputs will be
referred to as a design or explicit construction

many of the other results in the literature which of a concentrator. Clearly, the simplest design
establish upper bounds by proving that with a of a concentrator is in the form of a so-called
certain number of crosspoints, various concen- o co petor i s ba etwor k, a e

trator designs do exist. The lower bounds are (sparse or complete) crossbar network, where be-

obtained by using a straightforward necessary tween any input and any output there is at most

condition on the number of crosspoints for the one crosspoint. Concentrators can also be

special case of sparse crossbar full capacity realized by designs in the form of composite net-

concentrators. It is seen that this condition works. These are made up of various serial and

Ilust be satisfied by all embedded full capacity parallel combinations of sparse or complete
crossbar concentrators. Initially in this paper

concentrators contained in more general concen- wwb conce rs. wit illy in ths pr

trator designs, and on the basis of this obser- we will be concerned with only the sparse cross-
vation, a general necessary condition on the bar concentrator realizations, but, in the con-reatirn anberalf cessaryontin conce t cluding sections, we will consider composite net-
required number of crosspoints in a concentrator works as well.

is established. This general crosspoint condi- w

tion is exploited to obtain our lower bound re- Obviously, a complete crossbar network in
sults by demonstrating that an equal distribution which there is a crosspoint between each of the
of a given number of crosspoints between inputs n inputs and m outputs will function as an
and outputs in a sparse crossbar concentrator is (n,m,m)-concentrator. This special case where
the most efficient use of those crosspoints rela- c=m will be referred to as a full capacity con-
tive to maximizing the resulting capacity. As centrotor and will henceforth be denoted more
the use of sparse crossbar concentrators as com- simply as an (n,m)-concentrator. Similarly, a
ponents in the designs of other types of inter- sparse crossbar network in which there are cross-
connection networks is common, our lower bound points from each input to any c<m outputs will
results can also be used to obtain lower bounds function as an (n,m,c)-concentrator. However, as
on crosspoints in those interconnection network might be anticipated on the basis of the rela-
designs as well. In particular Pinsker's multi- tively small number of input to output mappings
stage concentrators and Pippenger's superconcen- that must be realized by a concentrator, the nm
trators are considered in this paper, and nc resulting crosspoints, respectively, for
Introduction each of these cases are usually unnecessarily

high. Indeed, it is well established that
An (n,m,c)-concentrator is an interconnec- (n,m.c)-concentrators and (n,m)-concentrators can

tion network with n inputs and m outputs be constructed with On) crosspoints. For
(m'n) where for an specified subset of c<m example, Pinsker [1] has shown that (n,m)-
inputs, all of the specified inputs can simul- concentrators can be constructed with at most
taneously be connected by means of disjoint 29n crosspoints. This was accomplished by means
paths to some set of c outputs. c is referred of a probabilistic argument that demonstrated the
to as the capacity of the concentrator. The existence (but not the explicit crosspoint place-
crucial limitation of the connecting capability ment) of some sparse crossbar concentrators that
of this type of interconnection network is that are components in a composite concentrator net-
given a specified set of inputs, in order to work. Similarly, Pippenger (2] used a similar
simultaneously connect each input in this set to argument to show the existence of sparse crossbar
an output, the outputs cannot in general be designs of (n , n ,n )-concentrators with at
arbitrarily specified (as would be the case in a most 6n crossp ints. These were then used as

permutation network). components in a composite design of an intercon-
of inputs to outputs nection network called a superconcentrator. These

Tn a concentrator are achieved by means of types of results provide upper bounds on the total
number of crosspoints required in the design of

switching elements referred to as crosspoints. the associated concentrator.
The detailed implementation of an actual cross-
point is, of course, application dependent. In There also have been contributions regarding
the following, a crosspoint can simply be viewed explicit constructions of concentrators. Most
as a switching element which when "closed" pro- notably, Gabber and Galil 13] have recently given
vides a connecting path between the line enter- a construction of a sparse crossbar concentrator
ing it and the line leaving it, as opposed to which was first studied by Margulis 14] and which
when it is "open" and no such connecting path furthermore permits an explicit construction of a

' i



superconcentrator in the form of the composite to exactly the same number of outputs will be
network suggested by Pippenger. Masson 15] also referred to in the following as a 1-point or
gave a construction of a sparse crossbar concen- singular crosspoint distribution. Mure generally
trator with what is referred to as a binomial an t-point crosspoint distribution is one in
crosspoint placement, which there is a set of t distinct incidence

In this paper, we will be concerned with , J-JJ 2,... 1 ) , such that

both the minimum number of crosspoints required W(j) 90 0 j C J
in (n,m,c) and (n,m)-concentrators and some ex-
plicit constructions. Regarding the former, we W(i) - 0 j e ,
will establish lower bounds for sparse crossbar JI , J for all j, and Jk in J , i k k
concentrator designs. With these results, we
will then be able to examine some explicit sparse and where
crossbar constructions, seeing in some cases I W(j) -n
(for example, Masson's binomial concentrator) jci
that these designs are, indeed, minimum. Finally,
we will be able to determine lower bounds on the Full Capacity Sparse Crossbar Concentrators
composite network realizations of concentrators The following is a necessary condition on
given by Pinsker and superconcentrators given the number of crosspoints in designs of full
by Pippenger. capacity concentrators.

Preliminaries Theorem 1: The minimum number of crosspoints

To consider sparse crossbar networks as required in a sparse crossbar design of an (n,m)-
concentrator designs, we will use the following concentrator is (n-m+l)m .
notation and definitions. Any sparse crossbar Proof: Assume that some output, say OE O of
network, denoted in general as N, can be a sparse crossbar design of an (n,m)-concentratcr
described as a triplet (I,O,R), where I is the was incident to n-m inputs. This means there
input set, III =n;O isthe output set, 101 =m; are n-(n-m) =m inputs with no crosspoints to
and R is a relation between I and 0 where for o . But, clearly this contradicts the assumption
iEI and otO , ocR(i) implies there exists that this design functions as a (n,m)-concentra-
a crosspoint between input i and output o . tor, since these m inputs only have crosspoints
This will at times be expressed in the following to, and, therefore, can be connected to, at most
by the statement that input i is incident to m - 1 outputs. Hence, in a sparse crossbar (n,m)-
output o , or, equivalently, that output o is concentrator design, each output must be incident
incident to input i.* to at least n- m+ I inputs. This results in a

A subnetwork, N' , of the sparse crossbar total of at least (n- m+ 1)m crosspoints in
network, N , described by (I,0,R) is simply a any design. Q.E.D.
network described by (I',O',R') where I' cI ,
0'cO , and R'cR . - A Lower Bound for Sparse Crossbar (n,m,c)-

ConcentratorsThe isolation set, a(O') , of a subset
0' cO of a sparse network described by (1,O,R) In the previous section, we showed minimum
is the subset I' cI consisting of inputs inci- sparse crossbar designs of (n,m,c)-concentrators
dent to outputs only in 0' . That is, for the special case where m-c. In this sec-

tion we will give a lower bound on the number ofo(O') = {ili £ I and R(i) c 01) . crosspoints required in any sparse crossbar
The total number of crosspoints between the (n,m,c)-concentrator, c<m . It will be seen in

inputs of 0(O') and the outputs of 0' will the following section that in some cases designs
be denoted as t' . It is clear that satisfying this lower bound can be given.

t. = I jR(j)J Consider any sparse crossbar design of an
JEo(0') (n,m,c)-concentrator. Assume that this design

contains nxo  crosspoints, where xo  is theWe will at times in the following consider incidence mean of the design. That is, ignoring
concentrator designs where the explicit cross- for the moment that in general xo  is not an
point placement is not specified, but, instead, integer, each input, on the average, is incident
only the crosspoint distribution of the design to x. outputs. In this sparse crossbar net-
is given. W(j) will denote the number of inputs work, since by assumption the capacity is c
in a sparse crossbar network that are incident any choice of c of the m outputs, say, 04
to exactly j outputs. In the discrete case, defines a subnetwork relative to the inputs in

W(j) = I{ific I and R(i) I = j) the isolation set, a(0') , which must function
as a full capacity concentrator. Let (01,02,

andm...,0(m)) be the (1) possible choices of out-
B c
I W(j) =n put sets of size c . Consider a(Oi), i=l,...,

j-1 (m) . It follows that

This latter crosspoint distribution and any other ()(Oi))-c+l)c < ti
such distribution where each input is incident i



Summing over all (m) choices of output sevs of to be placed between the n inputs and m out-
size c , and dividing by () yields puts of a crossbar grid so as to provide the

maximum possible capacity, there is a natural

a () tendency, because of analogies which can be made

I (O t with other physical phenomena, to in general con-

i1l (2) sider crosspoint distributions that evenly dis-
( -cl c - 2 tribute the crosspoints among the inputs. In

C) ( other words, intuitively one would expect to be

Recall that W(j) is the number of inputs able to maximize the capacity with a singular

in a sparse crossbar network that are incident crosspoint distribution. Indeed, if we ignore

to exactly j outputs. Now suppose that a given the fact that x in general is not an integer,

input is incident to j outputs. It follows this turns out to be the proper approach, and

that of the (m) possible selections of c of this is demonstrated rigorously in [7]. Hence

the m outputs, exactly ( :3) of those choices we can conclude that to obtain our lower bound

isolate this input. It is furthermore easily on the total number of crosspoints required in
seen that sparse crossbar designs of (n,m,c)-concentrators

from our necessary condition as given by (3), it
(c) is only necessary to consider the singular cross-

(1j) () (m).-c m)l point distribution case. This will be formally
c-j) c C ml(c-j)! stated as

For convenience in the following, we will Theorem 2: A lower bound on the number of

let crosspoints in a sparse crossbar design of an
C.) (n,m,c)-concentrator is nx where x satisfies

g(j)

(c) .n- (c-x) -c 2 ,c0 . (4)
so that (

m)
x

C- = c Binomial Networks

With the above and the crosspoint distribution, An obvious question raised by the lower
it follows that bound equation of Theorem 2 is whether or not

sparse crossbar designs actually satisfying the

A 0() m m equation exist. It can be seen that when the

i = (c)g~j)Wj) , values of the parameters n, m, and c satisfy
i-l 3=1 certain binomial interrelationships, this is the

or case. More particularly, an (m)-network has (m)
( ) inputs, m outputs, and a singular crosspoint

distribution wherein each input is incident to
i l(Oi)l m v outputs. Moreover in such a network, for any

il = [ gj).W(j) . input, the placement of the v crosspoints be-
(m) j-l tween it and the outputs is distinct from that of
c any other input. The capacity of such a design

Simlarly, it can be seen that is known to be v+ 2 (5). Substituting n -(m),
x - v ,and c - v + 2 into the left-hand side of

() (4) yields

t .v+2.
I g(j).W(j)'j (m).(v2-v) - (v+2)

2 
+ (v+2)

(m) j=l
c

Using the above in (2) and rearranging terms (v+2) (v+l) 2 +
yields the crosspoint distribution form of our 2 (2) - (v+2) (v+2) 0

necessary condition on sparse crossbar designs
of (n,m,c)-concentrators: In other words, x 

= 
v satisfies (4) relative to

((n),m,v+2)-concentrators, and binomial networks

2are, therefore, minimum sparse crossbar designs
I (g(j)-W(j)o(c-j))-c + c < 0 (3) of such concentrators.

j-1 Fixed Ratio Concentrators
To obtain our lower bound, we now must con-

sider all possible crosspoint distributions that For given integers n, m, and c, an (nk,mk,ck)-

satisfy (3) for sparse crossbar designs of concentrator will be referred to as a fixed ratio

(n,mc)-concentrators. For all practical pur- concentrator since, although the number of inputs,

poses this task would be impossible were it not outputs, and the capacity vary according to k ,
o utheir ratios remain fixed. For fixed ratio con-

for an intuitively satisfying property of cross- t ratos eman fie F o ixeri c
point distributions that reflects itself into centrators, we can again use (4) to determine a
the summation terms of (3). Given some fixed lower bound on the average number of crosspoints

number of crosspoints, say, nx , x<c , which are in their sparse crossbar designs. For this case

II



with sufficiently large k, it is easy to see points only on the main diagonal.
that our lower bound equation (4) can be approxi-
mated as ck x 2 2+c() nk (ck-x) -c k +ck=O

or c2 2
o k 2 ( ( -) -nc - c2 )  - k (( ) Y.nx - ) 0  .

Dividing through by k2  and taking the limit as ---
k approaches infinity yields T-_

lim k2, c)x k X 0 ,

k- k
2  

ma

or n,

(S) mc -c= 0
m

Taking logarithms, we have

x= (logn -logc) /(logm- log c) . (5)

Equation (5) represents a lower bound on the - --- o---
average number of crosspoints in any sparse n-rn
crossbar design of an (nk,mk,ck)-concentrator -j

1
- -

for large k . Figure It A co.posite n,)-Ccncantrator.

Pinsker' s Concentrators
Now, consider the composite network shown

In this section we will give lower bounds in Figure 1. This composite network was first
on some of the prominent composite networks for presented by Pinsker [1]. It can be shown [l]
concentrators. These composite networks use that if
sparse crossbar networks as their building blocks
or components, and, hence, their lower bounds N 1 is an (2(n-m) , n-m) - concentrator,

will be based primarily upon the results of the N is an (m,n-m) - concentrator,
previous sections on sparse crossbar concentra- 2

tors. To expidite the presentation of these and 2m > n
results (as well as the results of the follow-
ing hection), we will first develop some nota- then this composite network is an (n,m) concen-

tion to describe composite networks. trator. Clearly, this network can be described
as

Given two (sparse crossbar or composite) (n-) , ml (N N)
networks N1 and N2 where N1 has an input set m ) 1 .

I1 and, an output set 01 , and where N2 has an Pinsker used a composite network of this type to
input set 12 and an output set 02 , 1O11 = 1121, show that in general (n,m)-concentrators existed

then N1 ->N2 will denote the serial product of with at most 29n crosspoints. This was accom-
N1 and N2 and will represent a composite net- plished by considering in particular a composite
work h-. ing I for an input Set and 02 for an network design of an (n,

5
n)-concentrator as

output set, and where the output of N and the described by 6
inputs of N2 are identified or associated on a
one-to-one basis. 15 lin, n I (N N2 )

Given two (sparse crossbar or composite) 6

networks N, and N where (I II-nl and 1ll- where (NI=>N2) is a composite design in which:

mi and where 112 F- n2 and 102 )-m 2 , then (i) NJ is a (In, in) -concentrator in the form
Nlja,b'!M2 , where a<min(nl,n 2 ) , b<min(ml,m2) of the com~osit network
will denote the parallel product of-NI and _N2
and will represent a composite network having (N11 - N1 2 )
nl+n 2-a inputs formed from 11 u 12 but where 1 1 1
the "lower" a inputs of N1 and the "upper" a in which Nil is a (-n , -n , -n )-fixed

inputs of N2 are superimposed so as to have ratio concentrator and N12  is
paths to the outputs available either through N1 concentrator (which it should be nted 6has
or N2 , and having ml+m 2-b outputs formed from an input set, output set, and capacity equal

01 U 02 but where the "lower" b outputs on N1 to Ithat of the overall concentrator);

and the "upper" b outputs of N2 are superim- (ii) N2  is a (5n, 1n)-concentrator in the form
posed, of the composite network

Given a network N, then N will denote the (N23 '> N22 -> N21)
inverse of that network where the inputs of N

are used as outputs and vice-versa, in which N23 is a (5n ,.1n )-fixed ratio
concentrator, N22 is a (n , In , 

1
n)-

Finally, we will let rndenote the n input, fixed ratio concentrator, aAd N1 i a
n output sparse crossbar network with cross-



(In .- n)-concentrator (which, again, it should outputs and then scaling down the number of

be noted has an input set, output set, and capa- inputs appropriately. Hence, in this range, the

city equal to that of the overall ooncentrator) lower bound on the number of crosspoints in
Pinsker Is (n , 11 ) -concentrator is (7.4491) ( 6 .l

Pinsker's design is clearly recursive. 6 a -5 a

Hence, using (5) for the component fixed ratio Range (ii) - < a < 3 : In this range, Pinsker
concentrators, we have that a lower bound on the uses the serial product of a fixed ratio6n n 6n n
number of crosspoints in Nl and N2 2 is (n , - ) -concentrator and a (6 n , -) -

concentrator. Hence, in this ranaeaour lower
log - log bound on the number of crosspoints in Pinsker's1lo l- og 6
ln 1 1) 1.26726 (n(n ,-- -oncentrator is
log - log log a ) n + (7.4491) (4 a)

and that a lower bound on the number of cross- 6 5aa

points in N2 3 is log + log a

5 1 Range (iii) 3 < a < n : This range is treated
log 6 by Pinsker as a set of subranges. In each sub-

- n
) = 1.93494 n . range, his design consists of an initial serial

6 lg lg1log3og - log6 product of fixed ratio concentrators to reduce

Thus, a lower bound on the number of crosspoints the required concentration to that which can be
in Pinsker's composite design of a (n ,n)- addressed by a concentrator in range (ii). A
concentrator is 6 serial product of that initial composite network

is then taken with the appropriate concentrator
(6n) +l.93494n + 2(l.26726n) from range (ii) to complete the design. For

+ (lower bound for a Pinsker example, for the subrange 3 < a 9 , a serial
(In, in)-concentrator). (6) product of a fixed ratio (n

2
n ,n)-concentrator

and an (
2 
n !)-concentratorwith a design from

Recursive evaluation (6) yields a lower bound on rg 3) i -co enrtor w esign fom
the number of crosspoints in a Pinsker (n ,5n- range I s used. Hence, our lower bound on

concentrator to be 7.4491 n . Pinsker, it sould crosspoints on Pinsker's (n , Yconcentrator in

be noted, showed with his design the existence this subrange is
of (n I c n)- concentrators with at most 22n log a ( )og 2 62 ncrosspoznts° 2 )n+(- 6 -3 +749 a

crosspo~nts.log ! +log a log -L +loga53a
5

Now, with the design for (n , -n)-concentra- l og
n 6 9 27

tors, Pinsker considered (n , )-concentrators for Likewise, in the subrange - < a < -- theJ --
1' a <n. This was done by considering ranges of serial product of the fixes ratio 4n in ,j)-
a . We will likewise consider our lower bound concentrator and a fixed ratio e , n, £)-

over these ranges. Figure 2 shows a graph of concentrator is used to bring the concentrator
k versus a where kn is our lower bound on into range (ii). The serial product of thisn

Pinsker (n , -)-concentrators. initial network is then taken with a (4n )-
a concentrator resulting in a lower bound

9
of a

log +loga 29. / log a )n+ ( 3 in+
( 2 4n+

log -+loga log 1+loga 3
3 4 9

8log 3 + log a 4 6 4
) -n+(7.4491)6-n)

log -L+ log a

7 527 81
Similarly, the subrange T-a<-- uses the serial
product of 3 fixed ratio concentrators, namely,
an (n,4.n, R)-concentrator,8 an (2n ,n, n)-
concentrator, an a an (n fl -conentrator,

r,, and an cnCnrtr
to bring the concentrator into range (ii).

Hence, our lower bound curve of Pinsker's
(n, R)-concentrator can be obtained.

Pippenger's Superconcentrator
1 3 4 s An (n,n)-superconcentrator is an intercon-

nection network of somewhat more powerful con-
necting capability than that of a concentrator in

a the sense that there are n inputs and n outputs

6 and for any specified subsets of k < n inputs
Ranqg2 (i) 1 a In this range, the above and outputs, there exists a disjoint path to con-
(n , .5 n)-concentrator is used by simply designing nect each input to some output in the respective
this6network to have the correct number of n subsets. Hence, unlike a concentrator, for a

a superconcentrator both the input and output sub-

.T.... .. 7 _-
. .. . ........ ' =



sets to be connected can be specified and they (1 + 2(l ( )
can be of any size less than or equal to n. log2 + logS 1- n
However, within these subsets the particular one- which has a minimum of 17.0652 a at 0 -0.70251.
to-one connections cannot be specified. In this version of Pippenger's design,

(nn)-suparconcentrators were defined by (n,0.70251 n, In )-concentrators are used, each
Valiant 181 and shown to exist with at most 238a with an average of 2.03835 crosspoints per izput&

crosspoints. Pippenger later improved this bound Pippenger's (nn)-superconcentrator cannot be
to 40n [2). Recently, Gabber and Gabil [3) gave constructed with fewer crosspoints.
an explicit construction of an (n,n)-superconcen- Conclusion
tzator requiring 273 n crosspoints. We will con-
clude this paper by considering a lower bound on In this paper we have used a straightforward
Pippenger's superconcentrator design. requirement on the number of crosspoints in

sparse crossbar (n,m)-concentrators to obtain
lower bounds for the more general cases of (ntutc)-
concentrators. These lower bounds were attained

by means of an argument which showed that a non-
biased or singular distribution of a given num-
ber of crosspoints between inputs and outputs in
a sparse crossbar network is the most efficient
use of those crosspoints regarding the resulting
capacity. In certain cases it was seen that the
lower bound could actually be satisfied: namely.
when the number of inputs. outputs, and the
capacity satisfy the so-called binomial interre-
lationships, as in such situations the singular
distribution satisfying our lower bound require-
ments is achievable with an integer number of
crosspoints per input. The use of sparse cross-
bar concentrators as components in the designs of

other types of interconnection networks permits
2 us to use our lower bound results to obtain lower

bounds on crosspoints in those designs as well.
In particular we considered Pinsker's mutlti-stage
concentrators and Pippenger's superconcentrators.
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